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ABSTRACT

The Naval Space Surveillance Center (NAVSPASUR) uses an analytic satellite motion

model based on the Brouwer-Lyddane theory to assist in tracking over 6000 objects in orbit

around the Earth. The satellite motion model is implemented by a Fortran subroutine,

PP72. Due to the increasing number of objects required to be tracked, NAVSPASUR

desires a method to reduce the computation time of this satellite motion model. Parallel

computing offers one method to achieve this objective. This thesis investigates the parallel

computing potential of the NAVSPASUR model using the Intel iPSC/2 hypercube multi-

computer. The thesis develops several parallel algorithms for the NAVSPASUR satellite

motion model using the various methods of parallelization, applies these algorithms to the

hypercube, and reports on each algorithm's potential reduction in computation time. A

diskette containing the Fortran software developed is available upon request from

neta@boris.math.nps.navy.mil.
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I. INTRODUCTION

The Naval Space Surveillance Center (NAVSPASUR) currently

tracks daily over 6000 objects in elliptical orbits around the

Earth. To assist in identification and tracking of these

objects in orbit, NAVSPASUR uses an analytic satellite motion

model implemented in the Fortran subroutine, PPT2. This

subroutine predicts an artificial satellite's position and

velocity vectors at a selected time to aid in the tracking

endeavor. Several calls to the subroutine may be required to

aid in the identification of one object.

With the current increase in space operations, the number

of objects necessary to be tracked is expected to increase

substantially. Subroutine PPT2 provides orbit prediction

within an adequate response time for the current number of

tracked objects in space. However, a substantial increase in

the number of objects will cause the use of PPT2 on a serial

computer to become less responsive and computationally

burdensome. Additionally, if there exists a desire to

increase the accuracy of the NAVSPASUR model, the resulting

subroutine would require even more computing resources and

make achieving results even more time consuming.

Parallel computing offers one option to decrease the

computation time and achieve more real-time results. Use of

parallel computers has already proven to be beneficial in
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reducing computation time in many other applied areas.

Parallel computing offers an opportunity to both increase the

efficiency of the current model or reduce the computational

burden of a more accurate future model.

The ultimate objective of this thesis is to quantitatively

determine the parallel computing potential of the current

NAVSPASUR analytic model and determine the subsequent

reduction in computer time if the model is applied to a

hypercube multicomputor. The following chapter provides a

description of the NAVSPASUR satellite model and outlines the

algorithm used by the Fortran subroutine, PPT2. Chapter III

provides an overview of parallel processing and discusses the

methods to decompose a serial algorithm to be applied to the

hypercube. In Chapter IV, the two methods of decomposing the

analytic model are presented with their respective success in

reducing computation time. The last chapter of this thesis

provides conclusions and suggestions for future research.
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II. XAVSPASUR SATELLITE MOTION MODEL

A. OVERVIEW

The satellite motion model, adopted by NAVSPASUR and

implemented in subroutine PPT2, is a general perturbations

variation of elements model of artificial satellite motion

around the Earth. Given a set of a satellite's "mean" orbital

elements at a given epoch, the model predicts the state

(position and velocity) vector at a future time. The model

considers perturbing accelerations caused by atmospheric drag,

oblateness of the Earth, and asymmetry of the Earth's mass

about the equatorial plane. This model ignores perturbations

due to longitudinal variation in the Farth's gravitational

potential and the influence of other celestial bodies such as

the Moon or the Sun.'

Satellite motion models can be classified by the technique

used to integrate a satellite's equations of motion and the

method to describe the variation of the satellite's orbit in

reaction to the perturbing forces. The two primary techniques

to solve satellite's equations of motion are general

perturbations and special perturbations. General Perturbation

'Although the NAVSPASUR model, implemented by PPT2,
neglects the longitudinal variation to the Earth's
gravitational potential, a correction for this variation can
be made within PPT2 by a call to a second subroutine, LUNAR.

3



techniques involve an analytic integration of the perturbing

accelerations, while special perturbation techniques involve

the direct numerical integration of the equations of motion to

include all perturbing accelerations. Typically, general

perturbation techniques are more difficult and not as accurate

as special perturbation techniques. However, special

perturbation techniques, in general, provide this increase in

accuracy at a cost of several orders of magnitude of computing

resources (Bate, 1971, pp. 385 - 414). A third technique, now

gaining in popularity, is a semi-analytic technique. This

technique is combination of both the general and special

perturbation techniques. The NAVSPASUR model, a general

perturbations model, solves the satellite's equations of

motion by using series solutions to the ordinary differential

equations.

Within these techniques exists two methods to describe the

variations to a satellite's orbit. One method, variation of

elements, describes variations to the orbit in terms of

changes in the osculating orbital elements with respect to

time. The other method, variation of coordinates, selects a

coordinate system and describes variations to position and

velocity in this coordinate system with respect to time. The

disadvantage of the variation of coordinates method is that

the solution provides no immediate insight to the geometry of

the orbit (Danby, 1989, p. 319). Using the variation of

elements method, the NAVSPASUR model describes the variations

4



to an orbit in terms of changes to the classical orbital

elements with respect to time.

B. THEORY

The NAVSPASUR model is based on a theory developed in 1959

by Dirk Brouwer of Yale University (Brouwer, 1959, pp. 378 -

397) and modified by R. L. Lyddane of the U. S. Naval Weapons

Laboratory in 1963 (Lyddane, 1963, pp. 555 - 558). This

theory considers an Earth's gravitational potential

significancly more involved than the gravitational potential

used in the classical Kepler model of idealized satellite

motion. The classical model assumes a perfectly spherical

Earth and the gravitational potential may be expressed by

U (2.1)

where . is the gravitational parameter and r is the radial

distance of the satellite from the center of a spherical Earth

(Bate, 1971, pp. 11 - 16). The theory used in the NAVSPASUR

model assumes only that Earth is symmetrical about the north-

south axis. Expressing the potential in spherical harmonics,

the Earth's gravitational potential is modeled by

U-E P(C(sin) [.,qcosq%+S., qsinq%] (2.2)r r". • -

where Re is the equatorial radius of the Earth, 1 is the

satellite latitude, X is the longitude, C.,q and S.,, are

5



coefficients depending on the mass distribution, and Pq are

the associated Legendre polynomials. These polynomials are

defined in terms of the Legendre polynomials P.:

P0 (x) -=1
P1 (x) =x

P" x 2n-lxp, (x) I P.2(x) (2.3)
n n

P'W(x)--(l-x2)q12 dq p.(x)

Ignoring any longitudinal variation in the gravitational

potential, Equation 2.2 may be simplified to

U=~ P }--• J.P, (sinp) (2.4)

where Jn=-C,,q. The even J.'s account for the oblateness of the

Earth, while the odd J.'s account for the Earth's asymmetry

about the equatorial axis. (Solomon, 1991, p. 3)

1. Brouwer' s Model

Dirk Brouwer developed his theory of artificial

satellite motion while under contract by the Air Force

Cambridge Research Center and published this theory in the

Astronomical Journal in 1959. In this article, Brouwer used

a different notation for the classical orbital elements from

the notation commonly recognized today. This notation is also

adopted in the later NAVSPASUR model. In order to conform to

the notation of Brouwer's original article and NAVSPASUR

model, this paper will also use Brouwer's notation listed in

Table 2.1.

6



Table 2.1 Brouwer's Notation

Brouwer's Notation Common Notation

a semi-major axis a

e eccentricity e

I inclination i

g argument of perigee

h ascending node

f true anomaly v

1 mean anomaly M

Brouwer's model considers the zonal harmonics of the

Earth's gravitational potential, accounting for the Earth's

oblateness and its asymmetry about the equatorial axis as

expressed in Equation 2.4. To simplify the potential

equation, his model uses only the first four non-zero terms of

the series described in Equation 2.3 with J 1=0:

U= Rk2 2P+ -z ýA 3 .0 3P)
-• -- (l-3sin2• -- r 3in•5i
r r 3  r

+k4 (3-30sin2P +35sin'1) (2.5)
3r

+ -5-0r (15sinp-70sin P +63sin5 p)
wher

where

7
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EEf

Figure 2.1 Classical Orbital Elements
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k 2 -'J 2R4

A 3 0=-'T3

A5.0  --51

This truncation of the series introduces an error of the order

0(k 2
3), where k 2 =.4841605"10-3.0.5F5. (Brouwer, 1963, p. 393).

In order to derive the equations of motion for the

satellite, Brouwer utilized the Hamilton-Jacobi theory of

dynamical systems to express the Hamiltonian F=U-4v2 in terms

of canonically conjugate Delaunay variables. Letting a and e

be the osculating semi-major axis and eccentricity,

respectively, the Delaunay variables are:

L=Vi l=-mean anomaly

G=Vga(I-e2) g-argument of perigee (2.6)

H=ga (l-e2) cosl halongitude of ascending node

Using the Delaunay variables in Equations 2.6, the equations

of motion become

dL_ aF dl. =_ aF

dG_ aF dg=_ aF (2.7)

dh= 9F dh =_ aF

where the hamiltonian is

9



F: 2 + 4 k2 1 3h2 . a 3 3 H2 a 3

-- g ^21--2+) r3(_H(-2) acOs (2g+2f)] (2.8)

In order to express the hamiltonian, F, in terms of only the

Delaunay variables, Brouwer used the following Fourier series

expansions:

a• L 2Pjcosjl
r3 G2 1 ,(2.9)

a3
r3-COS(2gc2f)= Qjcos (2g-jl)

The coefficients Pj, Qj are power series in the eccentricity,

e.

Using two canonical transformations through the choice

of suitable determining functions, S and S', Brouwer was able

to solve the system of ordinary differential equations listed

in Equations 2.7 in terms of the mean elements, a", e", I",

1", g", and h". The transformed hamiltonian, F**, depends only

on the transformed variables L", G", and H". Replacing F by

F** in Equation Set 2.7, Brouwer found that L", G", and H" are

constants with respect to time and 1", g", and h" are linear

functions of time. Consequently, from Equation Set 2.6, it

follows that a", e", and I" are constant with respect to time.

Additionally, as a consequence of the transformations (see

Brouwer, 1959, pp. 379 - 393), Brouwer was able to separate

the changes in the orbital elements with time into secular,

long period, and short period variations. Including only

secular terms up to order 0(k 2
2 ) and periodic terms to order

10



O(k2 ), Brouwer found that the secular variations are a

function of only a", e", V", and t; the long period variations

are a function of a", e", I", and g"; and the short period

variations are a function of all six mean elements.

Additionally, a, e, and I do not experience any secular

variations to order O(k 2
2) and a does not experience any long

period variation to order 0(k 2 ). Using the following

constants,

al=semi-major axis constant
e"l=eccentricity constant
11=inclination constant

no
Re =Earth's equatorial radius

and notations,

"r=l•-e2 O=cosI"

k 2 A3.o 4 k4 Y =A 5.0

Y'2=7,- Y3= /3•- //4,•s7'=s•im a aa

Y 2 =Y2T1 -4Y'q=316Y y 4 =YAi-6 Y'5=7571_10

Brouwer's formulas for computing the perturbations are:'

2In order to avoid confusion over notation, let 8*, 5,
and 82 represent the secular, long period, and short period
variations, r.espectively.

11



Secular terms

-71 y'211 (-1 +302)

+3-f27' 1[ [-159+161+25112 + (30-96TI-901 2 ) 2+ (i052+14rp25r] 2) 9']

+ y/, ie / (3-3092 +35 ) (2 .10)

68g=3Y'2 (-1+5(2)

+3^12( [-35+2411+251"2 + (90-192il-126112 ) 92+ (385+36071+4511 2 ) 94]

+5y'4 [21-9112 + (-270 +126112 ) 02+ (385-189M,7) 0']
(2.11)

6.h=-3 Y'20+• y 7 2 [ (-5+121] 91]2 ) 0+ (-35-36 01-51l 2) 03]+5 _,(2.12)
+Y 4 (5-3112 ) (3-7(2)9
4

LonQ period terms

le=1 Y 2e"/112 @-1 2- 4004(1-5(2)
5- 4e 7 le' 1 3( 894 ]cos2g'4*I [.2l-.3ez- ii1_5e•)

T7T (1-502)
T1 7'3"28 i/ (2.13)

'772
+ 5 .'Isinl// (4+3e" 2 ) [1-992- 249' ] sing"Y27 (1 -W0)
_ 35 Y's e 12sinl// [1-502- 1604 ] sin3g""7nT2" • (1-5 ()2

61I=- 1 e/tnie (2.14)

12



.113{1y12[I-112- 4094 5yf' 804
- 10 2-592 -12 [1-3 (2- 1-52 ])sin2g"

n3sinI"{' 5@'4 249'_L3e , { 5__ 's+(4 +e 2) [1_9()-2_ 24 }COSg/l (2.15)

F2 e 4 41 - _9

35y15 eiTasini,,{_15 (2- _- 4Icos3g"
384Y 2

f 2 [ (2+et/ 2 ) -11 (2+3e// 2 ) 02_ 40 (2+5e" 2 ) ('
1_502

400e1 2 6'] + 5y' 4 [(2+e 12) -3 (2+3e" 2 ) 92

(i_5e2)24y,2

- 8(2+5e.12)(4 80e"296 ]}sin2g,"

1-5e2 (1-50 )2

+ 1 Y sinl" _e//2
47-ý err sinl"I
5y'5 • rZsinl" - e1192

+5e" sinl7) (4/3e2//2) (2.16)

+e"sinl" (26+9e'" 2 )] [1-992- 249' ]
1-5 @2

+÷--... e 1" 2 sinI" (4+3e"/2 ) [3+ + 4 ])cosg"
1-5 (2 (1-5()2)235 113 5892

+ 35y' 1 (e"sinI" (3+2e//2) - e 3 )[1 502- 16@4 ]

576f'2  - sinx 1- _- 2

+e" 39 2 sinl1" [5+_ + 808' 0 }cos3g"
(1-5(2) 2

6 1h=e" 29{-(_ [11+Y/2 + 802 + 2 00042J-9- (1--2 C--50r) =
+ 5y 4 [3+ 1692 4094 ]sin2g"

1 T7 -5 -(J-50()22

+ ( Y / 3 + 5 y'_5 (4+3e,, 2 ) [1_992_ 249'

sinl" 1/+ 6sinl1- (2.17)

+ i5y 5 sinl" (4+3e/" 2) [3+ + 07 ]cosg69
81-502 (1-502)

-35.s e 3()j 1 ____60

576Y2 2sin=[1-2 1-52

+sinI"[5+ 329-2 + 809' ])cos3g//
1-502 (1-502)2

13



Short Period terms

+3 (1-02) a o (2g'+2f')]I

82 0=T1 Y [(-1+3 ( 2 ) ( )a//

+3 (1-()2) ( a //3 -1 cos (2g'+2f") (2.19)
P7 T~

- n2/2(1_02) ( 3o"cos (2g'+f') +e/'cos (2g'+3f')]

62 x=y / (i"[3cos (2g/ +2f) (2.20)
+3e//cos (2g, +f') +e//cos (2g'-3f')]

8 I=- f2 (-1+302) (aq+ +)if

+3 (1-192) [1 a. sin (29" +f') (2.21)

+ / 2 1 2 1 ) s n ( g + f ) 1

+3 (1-e)2 ) a(1 n122+8) sin (2g'+f')

+( a // 12 + sin (2a'+3f')l (2.22)

+ Y' 2{f6 (l+ 5 9 2 ) (f/-1'+e//sinf')

+(3~-5()2) (3sin (2g' +2f 1)
+3e"sin (2g'+f') +e"sin (2g/'+3f'))

14



I

8 2h2-0({6(f'-I' +e"sinf') -(3sin(2g'+2f') (2.23)
+3e"sin (2g'+f' ) +e"sin (2g'+3f')}

Using Equations 2.10 through 2.23, Brouwer' s algorithm

for predicting a satellite's state vector is as follows:

* Begin with mean elements a", e", I", lo", go", and ho".

* Form mean motion no.

n= -Ra4 ,- (2.24)

e Propagate "mean" mean anomaly 1", mean argument of perigee
g", and mean ascending node h" using Equations 2.10 -
2.12.

1 //=lo0l1+n, t (l1 +8s S)
"g//=go l+not6bg (2.25)

h --h0"l+no t8 0 h

* Apply long periodic corrections to 1", g", and h" using
Equations 2.15 - 2.17 and compute the long period
variations 61e and 8,I using Equations 2.13 and 2.14.

1 '=1/+8 11

g/=g //+81g (2.26)
h'=h"6+81 h

* Solve Kepler's Equation for the eccentric anomaly E',
using 1' and e" and compute the true anomaly, f' and
radius, r'.

E/- e IsinE'= 1 I

S=f (1+e//) tanEltann (1-e-l) 2 (2.27)
Sa(l-e"2)

1 ÷eIcos f'

* Apply short period variations to 1', g', h', a", e", and
I" using Equations 2.18 - 2.23.

15



1=11+8 21g~=g'+62g

h=h'+62h (2.28)a=all+8 2a

e=e//"+8 1 e+ 2e
I=I11+8 zi+82Ir

"* Solve Kepler's Equation for E, using e and 1 and compute
f and r.

E-esinE=1

tan f= (l+e)tan (2.29)2 (1-e) 2
a (l-e 2 )
1 +ecosf

"* Compute the position vector in the conventional manner.

x-r [cos (g+f) cosh-sin (g+f) sinhcosl]
y=r [cos (g+f) sinh+sin(g+f) coshcosI] (2.30)
z=rsin (g+f) sin!

In addition to accounting for perturbations only due

the Earth's oblateness and asymmetry about the equatorial

axis, this model has several shortcomings which Brouwer

addressed in his article. The first is a singularity at

critical inclination (I,=cos- (1/,JF)=63.4o) for the long period

corrections since many of the terms have a divisor of

(5cos 2I-I) . Second is a singularity for very small

eccentricities (near circular orbits). This singularity is

due to the appearance of e" as a divisor in the short period

terms. Finally, there exists a singularity in some of the

elements for very small inclinations (orbits lying in the
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equatorial plane). Brouwer suggested that although

singularities in some of the elements existed for very small

eccentricities and inclinations, no such singularity existed

in the coordinates. Hence, the formulas could be modified and

expressions obtained for the perturbations in coordinates for

these special cases. (Brouwer,1959, p. 393)

2. Lydanne's Modifications

Lydanne's modifications correct for the singularities

in Brouwer's model due to the very small eccentricities and

inclinations. He presented the suggested modifications in an

article in the Astronomical Journal in 1963.

As Brouwer suggested in his article, Lydanne and

several other investigators believed there existed well-

determined expressions for the coordinates of a satellite in

the case of either very small eccentricity or inclination,

because no singularity actually existed in the coordinates for

the small eccentricity or inclination. However, Lydanne

encountered difficulty in applying the approach suggested by

Brouwer. This approach requires the Taylor series expansion

of the coordinates in the element perturbation. Although the

first-order terms were regular, the higher order terms were

singular. (Lyddane, 1963, p. 555)

Lyddane suggested another approach. By formulating

the perturbation theory in terms of Poincare' variables

instead of Delaunay variables, the singularities can be
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avoided. The Poincare' variables are defined in the terms of

the Delaunay variables as follows:

x 1 =L y 1=l+g+h

x 2 =/2 (L-G) cos (g+h) y2 =-1 2 (L-G) sin (g+h) (2.31)

x 3 =VTG--H)cosh y,=--2 (G-H) sinh

Using a method similar to Brouwer' s method of

solution, Lyddane presented with some algebraic manipulation

the following fo-mulas:

a=a/"+8a (2.32)
1 ÷g-h=l -1"g"+h "+8 (1 ÷g+h)

ecosl= (e" +8e) cosl" -e"&lSinl" (2.33)
esinl= (e"' +6e) sinI " +e"6lcos "

I I1" I'I ]csh
sin( ) cosh= [sin(--//-)÷coa (-/-) 8cosh"

-sin(--) 8hsinh"
(2.34)

sin (4 sinh= [sin (-I-) X// ) ] sinh"
I,,

+sin (-) &hcosh"
2

where

8 =81 +82

Additionally, Lydanne discovered that the use of I" instead of

1' in Equations 2.21 and 2.22 introduces an error of at most

order 0(k 2 
2 ) . Since Brouwer model computes long period terms

to only to order 0(k 2 ), Lyddane suggested that the short

period corrections may be computed using 1" instead of 1'
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(Lydanne, 1963, p. 557). Lyddane claimed this approach would

overcome the e"=0 and I"=0 singularities in the periodic

variations. His approach removed the singularity e"=0 for all

terms and the singularity at I"=0 for all terms except 81I

(Equation 2.14) (Solomon, 1991, p. 8).

Lyddane's algorithm for propagating an element set is

as follows:

" Compute 1", h", 6e, e"61, and 8I using Brouwer's formulas
(Equations 2.10 - 2.23). To avoid a small difference

between two large quantities, use the following identities
in Equation 2.19 to compute 8e.

1 a)!q3)) 3 1

el r" 1 6

*3cosf"-3elCOS2 f +e"cos3 f"1/) (2.35)
1 a#(-•)a(.) 3_,n-4]=- 1 (e"*3cosf"

+3 e"cos2 f" ÷+e'cos 3f")

"* Compute a and l+g+h using Equation Set 2.32. To reduce
amount of error introduced by finite precision, combine
Equations 2.15 - 2.17 for 61 (l+g+h) and Equations 2.21 -
2.23 for 82 (l+g+h).

"* Compute sin(%1")6h.
.17" sin17"8h

sin(-L) 8h= ico(- (2.36)22cos ( 1 )
2

"* Solve for e, I, 1, and h using Equation Sets 2.33 and
2.34.

"* Compute coordinates and velocity components in the usual
manner.
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coshcos(g+f)-sinhsin(g+f)cosI
.= sinhcos (g÷ f) .+coshsin (g+f) cosl

[ ~sin (g+f) sinl

-coshsin (g+f) -sinhcos(gf)cos 1
V- -sinhsin (g+f) +coshcos(g+f) cosX (237)

L ~cos (g+f) sinX
r=rf

_ [(esinf) f + (l+ecosf) VO]

3. NAVSPASUR Modifications

a. Atmospheric Drag

Brouwer's model considers only the perturbations

due to zonal harmonics (Earth's oblateness and asymmetry about

the equatorial axis). For near-earth orbits, the magnitude of

the perturbative acceleration due to atmospheric drag can be

of the same order as the magnitude of the perturbative

acceleration due of the earth's oblateness (Knowles, 1992, p.

226). Figure 2.2 shows the relative orders of magnitude of

the perturbative accelerations at various altitudes above the

Earth. Fluctuations in the density and relative velocity of

the atmosphere to the satellite make the perturbative

acceleration due to atmospheric drag difficult to model. To

compensate for the drag perturbation, the NAVSPASUR model

utilizes a simplified sub-model for drag (Solomon, 1991, pp.

9 - 10). Atmospheric drag is modeled by time derivatives of

the "mean" mean anomaly, 1", using two parameters M. and M3 :
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Figrure 2.2 Perturbative Accelerations on Satellites
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111=1i 11o +mC+M2t 2 +M1,t3  (2.38)

where t is the elapsed time from epoch. Using the following

relationships,

m=no (1 +8 ,l) =n0

and

a //3 =n0 -2

it can be assumed

a//3 nM -2 (2.39)

Differentiating Equation 2.39 and working to first order,

•=2 mh
3 1 (2.40)

m3

Using ih=2M2 from Equation 2.38 and substitutVng into Equation

2.40 yields following model for the drag effect on the semi-

major axis:

3=-I/M2  
(2.41)3m

Assuming a spherically symmetric atmosphere with an

exponential density variation

P (r) =poexp(- rO) (2.42)

where p0 is the density at radius r=r0 and H is the scale

height, the rates of change in the semi-axis, a, and
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eccentricity, e, with respect to the eccentric anomaly, E, may

be expressed as (Danby, 1988, pp. 330 - 331):

qa _a 28poexp( A-ecosE) 1+ecosE (1+ecosE)
dE H 1-ecosE (2.43)

=-a Aae clsE) l+ecosEcOSESar 6 P 0 exp ( -- os-eos
dE H 1-ecosEý

where 6 and A are constants. Estimating the average change in

a and e by integrating Equation Set 2.43 over one orbit to

lowest order of e yields:

Ae_ en2 o(2.44)

Aa a

Assuming a=1 and substituting Equation 2.41 into 2.44, the

model for the decay in eccentricity is:

2A . = - m (2 .4 5 )a // 3m M

b. Near Critical Znclination

Neither Brouwer nor Lyddane were able to correct

for the singularity in the long period terms at the critical

inclination (I 0=cos-1(i/ 4 )=63.40). To prevent an overflow

error in the subroutine PPT2, the factor (1-5cos 2 I")- 1 is

approximated by the function

T2= l-exp(-100x 2 ) (2.46)

x

where x=1-5cos 2I". However, with a small value of x, T2

cannot be computed directly. By using a product expansion of

Equation 2.46,
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T2=1 (l-exp(-Px2 ) )fl (l+exp(-2"x 2 )) (2.47)X n-0

where 0-lO0/21. To remove the factor of x from the

denominator, the first factor is approximated by

(1-exp(-Px 2 )) 1x (-1)" (2.48)

X n-0 (n+")

Figure 2.3 shows a comparison of T2 using Equations 2.47 and

2.48 and 1/x in vicinity of the critical inclination.

(Solomon, 1991, pp. 10 - 11)

C. PPT2

PPT2 is the Fortran subroutine which implements Brouwer's

model with Lyddane's and NAVSPASUR's modifications. PPT2

completes several satellite propagation tasks.

"* Predicts a satellite state vector at future time.

"* Computes partial derivatives of the position vector with
respect to the orbital elements (used in Method of
Differential Correction to modify set of stored elements
in light of current observations).

"* Predicts the time and state vector of satellite for a
given true anomaly.

PPT2 is composed of sections which accomplish the tasks

named above. The sections are delineated by conditional

breakpoints. Control over which section to execute is handled

by a set of control variables. Data is passed to the

subroutine through three control variables and four Common

blocks. A complete description of the input/output of PPT2 is
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Figure 2.3 Near Critical Inclination

contained in Appendix A.

NAVSPASUR represents each tracked object by a set of

stored elements. The stored elements are the mean ,rbital

elements plus two drag parameters, M2 and M3. The stored

orbital elements are the same as the classical orbital

elements used in Brouwer's model with two exceptions. The

mean semi-major axis, a", is replaced by the variable, m, the

mean "mean" motion.
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m= (1+6.1) no=+(6.1) a"-21 3  (2.49)

The other exception is that the cosine of the mean

inclination, cos I", is stored instead of the mean

inclination, I". Thus the stored elements are: 1", m, M2 , M 3,

e", g", h", and cos I".

For NAVSPASUR to use the formulas from Brouwer's model,

the mean semi-major axis, a", must be determined from the mean

"mean" motion, m. Since a" is implied in the 8.1 (Equation

2.10), no direct solution is possible. Therefore, PPT2

recovers a" using an initial approximation for a" and solving

Equation 2.48 for a" iteratively. The initial guess for a" is

ao"--m. Then, for i=l,...,5

kz

(3l =• /* (-i1+3 ()2
( 2111 (2.50)

+3" 21 I [-15+16T1+25TJ2

+1(30-961_-90T1 2) 02+ (105+1471+25T1 2) 94]

+15 r/&'"/2 (3-30)2+35(4)

a +8=( 1 ) 2/3Sm

and the mean semi-major axis, a"0, is taken to be equal to a."

(Solomon, 1991, p. 15).

Another difference between the model and actual

computations by PPT2 is the computation of the secular
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corrections for the mean argument of perigee, g", and mean

ascending node, h". The secular corrections for g" and h" are

computed in terms of mean anomaly, 1", instead of time using

6.g and S8h from Equations 2.11 and 2.12.

dg"/ dgl
dg"/_ •= _ =f n0 og= 8.g

dl dl" i m m ma (2.3/2

dt

dh" dh"1
dh" _dt _- no_ bh _ .h

S-= - = ma" 3 / (2.52)

dt

Once the secular corrections to the "mean" mean anomaly are

computed via Equation 2.38, Equations 2.51 and 2.52 are used

to correct g" and h".

g' =90/ d9.12A
÷dg

-d- (2.53)
h Ill=holl + dhAl

d-l

where

Al=mt +M2 t 2 + 3 t 3

With all of its conditional breakpoints, PPT2 completes

only those tasks required by the user. Prior to completing

any of the fore-mentioned tasks, the user is required to make

an initial call to subroutine PPT2 to recover a" and compute

the secular corrections. During this initial call, many

variables are set which will be used in subsequent calls,
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increasing efficiency. Therefore, at least two calls to PPT2

are required to complete any of its tasks. 3

Because the main objective of this thesis is the

parallelization of the satellite state vector prediction task

of PPT2, only this algorithm will be presented. For a

complete description of the other tasks see (Solomon, 1991).4

The algorithm implementing the NAVSPASUR model is as follows:

"* Begin with the stored mean elements plus the drag
correction terms (10", m, M2, M3, e0 ", go", h0 ", and cos I")

"* Compute T2 using Equations 2.47 and 2.48.

"* Recover mean semi-major axis, a0 ", from the mean motion,
m, by iteration using Equation Set 2.50.

"* Compute the following dimensionless quantities:

k 2  A. 0 k4 A5.0
a;7 Y a a"3 a /4 _ý (2.54)

Y/2 -Y2 11- Y'3=Y31W' Y' =41-T YV,=Y111

"* Compute drag corrections for the semi-major axis, a", and
eccentricity, e", using Equations 2.41 and 2.45.

"• Using Equation 2.38 and Equation Set 2.53, propagate the
mean anomaly, 1", argument of perigee, g", and the
ascending node, h", considering only the secular
corrections. (h" may be optionally corrected for the
Earth's rotation using Equation 2.56, where o is the
Earth's angular velocity and T, is the time at which the
direction of the Greenwich meridian and equinox direction
coincides.

3For a complete description of calling options of PPT2,
see (Solomon, 1991, pp. 11 - 24).

4A complete listing of subroutine PPT2 is contained in
(Solomon, 1991, pp. 39 - 55).
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1 // = 1 0I •

gI /=g -- +i (2.55)

h" =holl +_.hA'

h1"=hI-(o(t-T0 ) [optional] (2.56)

" Propagate the eccentricity, e", and the semi-major axis,
a".

e"/=min[max[O,e 0
1 1+&t], .99999] (2.57)

a" --max[I,ao'÷+At]

"* Solve Kepler's Equation using Steffensen's Method and use
this result to compute cosine and sine of the true anomaly
and radius.

EI =111+e/l sinEI1

cosfe•= cosE" -e",
1-e"cOsEE" (2.58)

sinf"= vl-eII sinE"I
l-e/'cosEE"

l+el +cosf"l

"* Using Equations 2.13-2.17, compute long period correction
terms for e, 1, h, and I in the following forms replacing
g' and (1-50 2)-l with g" and T2, respectively:

,le=VL lcos2g" 'VLE2sing" + VLE3sin3g"
e"I 811 -- (VLEIsin2 g" -VLL2cosg" -VLE3cos3g")

sinl" 1h=VLHlIsin2g' /VLH2Icosg" +VLH3.rcos3g" (2.59)
el8 •le

• I=- e 1
T2tanIl"

where
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5/' 4  - 2-8 4- T2]
VLEI~e"11 ( [1-Yl22-4004. T2] - 12Y/2 (1-3-8 T

47/n (Y /+ 5Y5 (4+3e//2) [1-9@2-2404. T2])
4 Y/2  1 -6-

VLE3=- 354y 5 e"12 12 sinI" [1-502-1604. T2]384 y'2
_ ~15y', 5 •snl

VLL2=VLE2+ -- y.-e/2  [1-902-24(4. T2]32y/2

V'LHii=e" 2 Osini.' ( 2 [11+8082- T2+20004- T2 2 ]

+__12 [3+1602. T2+4004- T2 2 ])
12y' 2

VL4Hf2I!{y/3 + 5I-5-(4+3e'612) [l-982-2404. T2]
4Y 2 119e9204

+ 15y' 5sin 211 (4+3e,/2) [3+1602- T2+4004- T22]J

VLH 35 e '130{ 1 [1-502-164. T2]
L 3-576y2  f

*sin21l" [5+3202- T2+8004- T22])

Representing the quantity (l+g+h) by z, compute
61 z=6 1l+8 1g+ 6h by combining individual parts prior to
computing.

8 1zzVLS1sin2g1' +VLS2cosg" 'VLS3cos3g"' (2.60)

where

101 8y.

VLSI= i8 2 (1-112-40(4- T2) --- 0. (1-302-804 T2)]

+e //2 0040T21 2/+1(2
-- [1 2 (11+8002" T2+2000" T22 ) -y' 3 (3+160. T2+400 4 " T2)]

+25e"2 06- T2 4 (y/ 2 - ) Y/3 [//2 (1-3302-20004- T2)

-y', (1-902 -400'" T2)]
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1 S57' 5
VLS2=e"sinI.'.l_7.[ (Iq+ ) + CY'] [ 5Y3+- (4+3e'1 2 ) (1-902-2434- T2)

4y'2  l+ +-f -1-6
+164y' 2 [3 (e" 2 -TI3 +l1] [1-902-2404- T2]

64Y/2

+315-•/5 0 (1 - 0 ) [(4+3e'" 2) (3+1602- T2+4004- T2 2 ) ]}

VLS3=e 357'5 [3112-3-(2+-- 0 ) e' 12] [1-5 02 -16 ()4 T2]VLS3=ellsinI"1{ 3 2_
1152 Y12 +

- 35y"5 [e 20 (1-0) (5+40)2. T2+8004 . T2 2 ) ]
576Y/ 2

0 Using Equation 2.19 and Equation Set 2.35, compute the
short period correction term for e, replacing g' and f'
with g" and f", respectively. Then combine long and short
period corrections to form 8e.

82e= 2- (-1+302) [e/I2 cos3f/I+3eI/COS2f//

1+11+3of'e T+11 (2.61)

+3 (1-02) [e'1 2cos 3f//+3e/Icos2f//
+3cosf" +el'cos (2g// +2f") ]
-_1 2 (1-02) [3e"cos (2g//+f"/) +e//cos (2g/+3fE")

Se=61 e+8 2 e (2.62)

o Using Equations 2.20 and 2.21, compute the short period
correction tnrms for I and 1 in the following form
replacing g' and f' with g" and f", respectively. Then
combine respective long and short period terms to form 5I
and e6l.
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6 2 .= 2sini"I [3cos (2g"1+2ff") +3e"cos (2g/"+f"/)

+e'/cos (2g" +3f/")]

e"8 2/=-3{2 (-I-302)

x[ (1+el'cosf"l) (2+ellcosfl") +I]sinf" (2.63)

+3 (1-0z)

x[ (I- (l+el'cosf") (2+e"cosf") )sin(2gl,+fll)

+( (1+ellcosf"l) (2+ellcosf"l) + 1S4.)

x sin (2g" +3f") ]}

I(2.64)
e61=e61 l +e 2 (l

"Using equation 2.23, compute short period correction for
h in the following form.

sinI"I62h-- fsinI'( [6 (,f"1-1.1"e sinf"")2 (2.65)
-3sin (2g" +2f") +3e"sin (2g" f") (2
+e"sin(2g"+3f"))

"* Using Equation 2.36 and relationship Sh=81 h+62 h, compute
sin (II ") 6h.

1/" sinI" (8 1h+82h)
sin(- 2 ) 8h= 2cos (1) (2.66)

" Combine terms of 8 2z=8 21+8 2g+82 h, replacing g', 1', and f'

with g", 1", f", respectively. Then compute z.

82z=-e /2& 21 TT+-ii -I

_ 2'_/ [6 (1-20-5 ()) (f" -e/ /sinf '-1I)2.7

4
-(3+20 -502) (3sin (2g// +2ff")
+3e/Isin (2g' +2f/f) ÷e'/sin (2g1 +3ff") )
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z=11/ +gll +h"1 +81z+82z (2.68)

"* Compute a using Equation 2.18.

a=a" +a2 a (2.69)

" Solve Equation Sets 2.33 and 2.34 explicitly for e, 1, I,
and h.

e=/ (be) 2+ (e&l) 2

l=tan' ( 8esinl/" +e8lcoslI)
becosl "-eblsinl 77

cosl=1-2 [ (81) 2+ (sin ( h) 2] (2.70)

81sinh" +sin ( )hcosh"
h-tan-1 (

81cosh"l -sin (i) 8hsinh"

"* Compute g.

g=z-1-h (2.71)

"* Solve Kepler's Equation again using Steffensen's Method
and compute cos f, sin f, and r.

E=l ÷esinE

cosf= cosE-e
1 -ecosE (2.72)

sinf-- v• -e 2 S inE
1 -ecosE

r= 
an2

1+e~cosf

* Compute the satellite state vector using Equation set
2.37.
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III. PARALLEL COMPUTING

A. OVERVIEW

1. Definition

The complexity of scientific computing today demands

faster computers. Greater detailed models require a

substantial amount of computation. Faster computers are

needed to provide the results of the computation in a timely

manner. In response to this demand, computer engineers have

taken two approaches to achieve faster performance.

The first approach is to increase the speed of the

circuitry. Although great advances have been made in

increasing the speed of computer circuitry, this increase in

speed is bounded by the speed of light. Additionally, the

specific design and manufacture requirements for further

increases in speed are quite costly.

The second approach, parallel computing, provides an

alternate means to achieve faster computer performance using

affordable circuitry design. Many articles and books have

been written describing the methods to exploit this approach.

The terms parallel computing and parallel processing seem to

be used interchangeably in these texts. For the purpose of

this thesis, parallel computing and parallel processing are

assumed to be synonymous. In this emerging field, there
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exists slight differences in how to define parallel computing.

One definition which best encompasses the breadth of the field

may be taken from (Hwang, 1984, p. 6):

Parallel processing is an efficient form of information
processing which emphasizes the exploitation of concurrent
events in the computing process. Concurrency implies
parallelism, simultaneity, and pipelining. Parallel
events may occur in multiple resources during the same
time interval; simultaneous events may occur at the same
time instant; and pipelined events may occur in overlapped
time spans. These concurrent events are attainable in a
computer system at various processing levels.

In his book, Hwang describes the processing levels to

be: the program level, the task level, the inter-instruction

level, and the intra-instruction level. The program level

involves executing multiple programs by means of

multiprogramming, time sharing, and multiprocessing. This

level is concerned with the design of parallel processing

systems which is beyond the scope of this thesis. Therefore,

for the purposes of this paper, the definition of parallel

computing is defined as the efficient form of information

processing emphasizing the concurrent computations and

manipulation of data to solve a single problem.

2. Classification of Parallel Computers

a. Typo Classification&

Implicit in the definition of parallel computing

are three methods to achieve parallelism. The three methods

are temporal parallelism, spatial parallelism, and

asynchronous parallelism (Hwang, 1984, p. 20). These methods
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offer a manner to classify the various types of parallel

computers.

The first type is a pipeline computer. Pipeline

computers perform overlapped computations to exploit temporal

parallelism. Computations are divided into a number of stages

or segments with the output of one segment being the input of

another. Analogous to a factory assembly line, if each

segment works at same speed, the work rate of the pipeline is

the sum of work rates of the segments. The maximum work rate

is achieved once the pipeline is full. An example of a

pipeline computer is the Cray-1.

The second type is an array processor. Array

processors use multiple synchronized processing elements to

achieve spatial parallelism. Each processing element performs

simultaneously identical operations on different data. An

example of an array processor is the Connection Machine.

The third type is a multiprocessor.

Multiprocessors may achieve asynchronous parallelism through

a set of interactive processors (nodes) . These processors are

ciapable of performing independent operations, but share

resources such as memory. An example of a multiprocessor is

the Cm* of Carnegie-Mellon University.

The final type is a refinement of the

multiprocessor, the multicomputer. Multicomputers, like

multiprocessors, achieve asynchronous parallelism through a

set of interactive processors. But these processors each have
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their own local memory. An example of a multicomputer is the

INTEL iPSC hypercube. Because each processor has its own

memory and may perform independent operations, multicomputers

offer the user an added degree of freedom in programming.

However, interaction between the processors (nodes) may

require synchronization to be explicitly programmed in the

multicomputer code.

The four type classifications are not necessarily

mutually exclusive. Many commercially available array

processors, multiprocessors, and multicomputers employ

pipeline processors to complete operations such as vector

processing.

b. Architectural Classifications

Parallel computers may also be classified

according to their architecture. One scheme for classifying

digital computers was introduced by Michael J. Flynn in 1966.

He introduced a scheme to classify computers into four

categories based on the multiplicity of instruction and data

streams. An instruction stream is a sequence of instructions

to be executed by the computer. Likewise, a data stream is a

sequence of data used by the computer. Flynn's four

categories are (Flynn, 1966):

1. Single instruction stream, single data stream (SISD).
Most serial computers fall in the SISD category.
Although instructions are completed sequentially, this
category includes overlapping instructions (pipelining).
Therefore, pure pipeline processors also belong to this
category.
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2. Single instruction stream, multiple data stream (SIMD).
Array processors fall into this category. The array
processor receives a single set of instructions, but each
element receives and manipulates its own set of data.

3. Multiple instruction stream, single data stream (MISD).
No current computers fall into this category. This
architecture has been challenged as impractical by some
computer designers (Hwang, 1984, p. 34).

4. Multiple instruction stream, multiple data stream (MIMD).
Most multiprocessors and multicomputers fall into this
category. The INTEL iPSC is a MIMI machine.

c. Topological Classification&

Another classifying scheme for parallel computers

is by the topology of the inter-processor connections. These

connections are the means through which commun 4 cation between

individual processors is conducted. This classifying scheme

applies only to array processors, multiprocessors, and

multicomputers. Some of the general topologies are the mesh,

the pyramid, the butterfly, and the hypercube. Figures 3.1

and 3.2 show examples of the mesh and hypercube topologies.

The topology may also be customized to meet specific computing

needs. For a more comprehensive discussion of the various

topologies see (Quinn, 1987, pp. 25 - 30).

3. Measurements of Performance

With faster computation speed being the ultimate

objective, certain measures are needed to determine the

effectiveness of parallel computing versus serial computing to

achieve this objective. Computation speed depends on many

factors that include the computer hardware design, the
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Figure 3.1 Two-dimensional meshes

technical specifications of its components, and the algorithm

or method of solution used to complete the computations. Two

common measures of effectiveness, accounting for both the

hardware and the algorithm, are speedup and efficiency.

Speedup, Sp, refers to the ratio between the time

taken to execute a set of computations serially, T,, and the
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Figure 3.2 Hypercubes of dimension zero through four

time taken to complete the same set of computations exploiting

parallelism, Tp,
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Although speedup compares the time taken for the serial

computer program and the parallel computer to complete the

same set of computations, this set does not imply both

programs follow the same algorithm. Parallel programs often

contain additional operations to accommodate parallelism. In

order not to be misleading, speedup should compare the

parallel computer program with the most efficient serial

computer program. Many suggest that times, TP and T,, be

measured using a particular parallel computer and the fastest

serial computer. However, the variation in the technical

specifications of both computers may cloud the issue whether

parallel processing is beneficial. To be an effective

measure, the computing technical specifications of the

individual processor of the parallel computer and the serial

computer should be equal. Therefore, for the purpose of this

thesis, speedup, Sp, is measured by the ratio of time, T1,

taken by the parallel computer executing the most efficient

serial algorithm and the time, Tp, taken by the same parallel

computer executing the parallel algorithm using p processors.

'TI (3.2)

The other measure, efficiency, accounts for the

relative cost of achieving a specific speedup. Relative cost

is measured as the number of processors required to achieve

the speedup. Efficiency, Ep, is the ratio between the
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speedup, SP, and the number of processors, p (the theoretical

speedup).

2SP (3.3)

Many factors could possibly limit the possible speedup

and efficiency of a parallel program. These factors include

the number of sequential operations that cannot be

parallelized, the communication time between individual

processors, and the time each processor is idle due to

synchronization requirements. Many have argued these factors

severely restrict the benefits of parallel computing. Despite

these factors, research has shown parallel computing can be an

effective means to reduce computation time (see Quinn, 1987,

pp. 18 - 20 and Gustafson, 1988). Considering only the number

of sequential operations in a program that cannot be

parallelized, Amdal's Law states that the maximum speedup, SP,

achievable by p processors is:

SP-- +l1 f)7P(3.4)

where f is the fraction of operations that must be performed

sequentially (Amdahl, 1967, pp. 483 - 485). Equation 3.3

provides an initial means to determine if an algorithm is a

good candidate for parallelization.
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B. INTEL iPSC/2 HYPIRCUBE

To maximize speedup and efficiency, parallel algorithms

must be developed with a specific parallel computer in mind.

In determining the parallel computing potential of the

NAVSPASUR satellite motion model, an INTEL iPSC/2 hypercube

computer, located at the Department of Mathematics at the

Naval Postgraduate School, was used. The iPSC/2 is a MIND

multicomputer with a hypercube topology. The iPSC/2 consists

of a system resource manager and eight individual processors,

called computing nodes. The system resource manager, often

called the host, provides the interface between the user and

the computing nodes. The host is a 386-based computer, which

may be used to process data in addition to providing the

interface for the user.

The computing nodes are complete, self-contained INTEL

80386 microprocessors. Each computing node also contains a

80387 numeric coprocessor, its own local memory, and a Direct-

Connect communications module (DCM). Each computing node may

be augmented by a Vector Extension (VX) module for pipelined

vector operations. The iPSC/2 located at the Naval

Postgraduate School contains only one node with the VX module.

Communications among the nodes and the host are completed

through message passing. The Direct-Connect Module (DCM)

allows messages to be sent directly to the receiving node

without disturbing the other node processors. Other hypercube

designs require messages to be stored and forwarded along a
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path of connected nodes until the message reached the

receiving node.

The iPSC/2 uses a UNIX operating system and may be

programmed in Fortran and C languages. A more detailed

listing of the INTEL iPSC/2 hypercube's technical

specifications is contained in Appendix B.

C. METHODS OF PARALLELIZATION

1. Vectorization

Vectorization is one method to parallelize an existing

sequential program. Vectorization is the process of converting

blocks of sequential operations into vector instructions that

may be pipelined. A simple example of vectorization using

Fortran is the following:

Sequential Code:

Do 10 i=l,N
10 z(i)=x(i)+y(i)

Vector Code (VAST2):

call vadd(N,x,l,y,l,z,1)

To assist in the vectorization of a serial program, there

exist many commercially-available vectorizing compilers.

(Quinn, 1987, pp. 233 - 235)

Vectorizing compilers automatically vectorize

sequential program code for execution. Additionally, they may
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identify to the user program constructs and data dependencies

that limit potential vectcrization. Vectorization cannot be

maximized solely by a compiler. Moica vectorizing compilers

have a limited ability in recognizing sequential blocks to be

vectorized and translations may not be always straight

forward. INTEL iPSC/2 contains the vectorizing compiler,

VAST2. The VAST2 complier supports only Fortran programs and

is limited to vectorizing only do loops and if statements.

(iPSC/2 VAST2 User's Guide, 1989)

2. Distributing Computations

By parallelizing tasks on individual processors,

Vectorization provides only the first level of parallelism.

In order to partition a program into parallel tasks to

distribute among the processors of a multi-computer, a

different strategy is needed. Although there exist many

commercially-available vectorizing compilers, compilers which

identify higher levels of parallelism have not beei as

successful. Therefore, the task of developing an algorithm to

efficiently distribute computations among several processors

is left to the user.

Performance of parallel algorithms may be radically

different for different parallel computers. A number of

factors such as processor speed, memory accesq time, and

memory capacity can affect an al'•orithm's perfcrmance. Hence,

the strategy to parallelize an algorithm must be developed
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with a specific parallel computer in mind. The multicomputer

with each node having its own memory provides the greatest

flexibility to the user. For a multicomputer, the user must

partition the problem among the processor nodes. The

hypercube topology allows the user to use the natural topology

of the problem to decompose the problem into parallel

processes. A process is defined as a single statement or a

group of statements which are a self-contained portion of the

total computations. Using the INTEL iPSC/2, two decomposition

strategies are suggested (iPSC/2 User's Guide, 1990. pp. 4-1 -

4-6):

"* Control Decomposition

"* Domain Decomposition

a. Control Decomposition

Control decomposition is the strategy of dividing

tasks or processes among the individual processors (rodes).

This strategy incorporates a divide and conquer approach.

Control decomposition is recommended for problems with

irregular data structures or unpredictable control flows.

One method of control decomposition is for the

parallel program to self-schedule tasks. For this method one

node assumes the role of a manager with the remaining nodes

assuming roles as workers. The managing node maintains a list

of processes to be accomplished and assigns a processes to the

working nodes. The working nodes request jobs, receive
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processes, and perform the indicated tasks. Implied in the

self-scheduling method is the cost of one processor to perform

the manager duties. (iPSC/2 User's Guide, 1990, p. 4-4)

A second method of control decomposition is to

pre-schedule the processes. The exact tasks required of each

node are explicitly stated in the parallel program. Although

this method saves the cost of the managing node, care must be

taken to ensure the processes are evenly distributed among the

nodes.

b. Domain Decomposition

Domain decomposition is the strategy of dividing

the input data or domain among the nodes. The partitioned

sets of domain may be specific data sets such as blocks of

matrix or represent a specific grid such as used in finite

difference or finite element methods to solve partial

differential equations. The major difference between control

and domain composition is that domain decomposition strategy

requires each node to perform essentially the same tasks but

with different input data.

Domain decomposition is recommended if the

calculations are based on a large data structure and the

amount of work is the same for each node. An example of

domain decomposition is multiplying two large matrices by

block multiplication. Although domain decomposition may seem

perfectly parallelizable and thereby very efficient, user must
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use caution to ensure each input data set requires essentially

the same amount of work.

3. Improving Performance

The decompcsition of a problem may require the use of

the control, domain or a hybrid of both strategies to be

efficient. Once a specific strategy is chosen, several

factors should be considered to improve the performance of the

parallel algorithm. Those factors include:

"* Load balance

"* Communication to computation ratio

"* Sequential bottlenecks

a. Load Balance

Load balance refers to the degree to which all

nodes are active. If the work is not evenly distributed among

the nodes, the parallel algorithm will show constrained

speedup. Load balancing may be achieved by decreasing the

grain size of the parallel tasks, self-scheduling tasks, or

redistributing the domain. Grain size refers to the relative

amount of work completed in parallel. Pipelined vector

operations is an example of small grain parallel computing and

distributing computations may be considered as large grain

parallel computing.

b. Communication to computation ratio

Communications to computation ratio is the ratio

between the time spent communicating and the time spent
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computing. Except for perfectly parallel problems, time lost

for communications is inherent in parallel algorithms. A

large communication to computation ratio constrains a parallel

program's performance. The objective is to maximize the time

a node spends computing and to minimize the time spent

communicating. Reductions in the communication to computation

ratio may be accomplished by increasing the grain size,

grouping messages, or recalculating values instead of

receiving the value from another node.

c. Sequential Bottlenecks

Sometimes tasks cannot begin until completion of

a previous task, limiting number of tasks that can be

completed in parallel. A sequential bottleneck is the

circumstance of other processors waiting for another processor

to complete a task before they may continue. The portion of

operations that are not completed in parallel can

substantially restrict speedup as can be seen by Amdahl's Law

(Equation 3.3). Inherent in sequential bottlenecks are any

requirements of the nodes to synchronize. The only method to

remove sequential bottlenecks is to* modify or reorder the

algorithm in order to overlap sequential code with other

computations.
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IV. PARALLELIZATION OF PPT2

The purpose of this research was to determine the

potential reduction in computation time for the NAVSPASUR

satellite motion model through parallel computing. This

potential may be assessed by determining the relative speedup

and efficiency of various parallel algorithms employing the

methods and strategies of parallelization discussed in Chapter

III.

As stated in the previous chapter, the strategy for

developing parallel algorithms depends heavily on the

architecture and topology of the parallel computer used. Due

to ease of access and familiarity with the INTEL iPSC/2

hypercube, the parallel computing potential-of the NAVSPASUR

model was assessed with respect to implementing the model on

this specific multi-computer. Although performance of various

algorithms may vary somewhat depending on the specific

parallel computer, it was hoped that some generalizations may

be made from the application of the NAVSPASUR model to this

hypercube.

A. VECTORIZATION

The first method of parallelization considered for the

NAVSPASUR model was vectorization. Vectorization is usually

simpler than the other methods of parallelization to apply.

50



Additionally, if vectorization proved to be beneficial, it may

be incorporated with the other parallel computing methods in

order to realize even greater speedup and efficiency.

The realized speedup due to vectorization is a function of

the number of vector operations within a specific algorithm.

Vector operations in Fortran are usually characterized by do

loops containing scalar operations performed on each element

of an array. With each node possessing its own vector co-

processor (VX module), these do loops may be replaced by

single calls to canned subroutines. These subroutines utilize

a vector co-processor to perform pipelined vector operations,

significantly reducing computation time. In addition to the

explicit vector operations within an algorithm, sometimes

there exist blocks of scalar operations that may easily be

transformed into vector operations. Scalar operations

contained within Fortran do loops and logical if statements

are usually good candidates.

Analysis of the Fortran subroutine PPT2 shows that the

current subroutine contains very few explicit or implicit

vector operations. The only apparent vector operation in the

satellite state vector prediction portion of PPT2 is the

computation of the velocity vector at the very end of the

algorithm. The propagation of the orbital element set

comprises the majority of the computations. The formulas used

to propagate the orbital elements, presented in Chapter II,

may be characterized as lengthy, algebraically-complex, non-
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linear scalar functions of the mean orbital elements.

Attempts to transform these formulas into a set of vector

operations quickly become algebraically overwhelming and a

successful transformation is highly improbable.

Likewise, with the exception of the computation of the

variable T2, the scalar operations contained in the do loops

and if statements of PPT2 demonstrate limited vectorizing

potential due to data dependency within the loops and

statements. Therefore, based on this initial assessment of

limited vectorizing potential, vectorization was not

considered as a viable method to reduce computation time and

efforts to vectorize PPT2 were pursued no further.

B. DISTRIBUTION OF COMPUTATIONS

With vectorization deemed as not a viable method of

parallel computing for the NAVSPASUR model, any reduction in

computation time needed to be achieved through the method of

distributing computations. Both strategies of control

decomposition and domain decomposition were considered.

In order to better appraise the potential reduction of

computation time by implementing each strategy, separate

parallel algorithms utilizing the different strategies were

developed and evaluated with respect to the measures of

speedup and efficiency. Although a combination of both

strategies may possibly provide the greatest speedup and

efficiency, the evaluation of separate algorithms implementing
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the respective strategies exclusively provided a better means

to determine h3w the majority of the reduction in computation

time was achieved. Additionally, once the relative benefit of

each strategy is determined, it would not be difficult to

incorporate both algorithms together on the hypercube.

Using the two distinct strategies, two separate sets of

programs were developed and evaluated. Each program set

consists of two Fortran programs to be executed on the INTEL

iPSC/2. A host (system resource manager) program acquires a

specified size cube; loads the node program on the processors

of the attached cube; and, upon completion of the algorithm,

releases the cube for another application. The node program

implements the parallel algorithm. Although the host may also

serve as an additional p,:ocessor, the parallel algorithms

utilized only the nodes of the iPSC/2. 5

Program set named P3T-4 implements an algorithm using the

control decomposition strategy and the program set named P3T

implements an algorithm using the domain decomposition

strategy. Descriptions of the algorithms and an assessment of

their respective results are contained in the subsections

below.

5The routine used to determined run times for the various
programs is measured differently for the host and the nodes.
In order to obtain comparable times to compute speedup and
efficiency, the actual parallel algorithms utilize only the
node processors. (iPSC/2 Programmer's Reference Manual, 1990,
p. 3-174.)
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1. Control Decomposition -- P 3T-4

The strategy of control decomposition is to reduce the

NAVSPASUR model's computation time by the concurrent

completion of separate tasks (processes) by the individual

nodes of the hypercube. By reducing the computation time

necessary to predict each individual satellite's state vector,

an overall reduction in computation time to predict state

vectors for all tracked objects can be achieved. Hence, the

ultimate objective of the program set, P3T-4, was to reduce

the computation time for a single object in orbit.

a. Algorithm

In order to predict a satellite's state vector

considering the secular and periodic correction terms due to

the zonal harmonics and a correction term for each element due

to the sectoral harmonics, the NAVSPASUR model requires the

completion of 55 major tasks. The majority of tasks are

evaluation of the formulas outlined in Chapter II, some tasks

are a group of computations such as the group of computations

necessary to compute the variable T2 or the group of

computations to solve Kepler's Equation by Steffensen's

Method.

The first step in partitioning these tasks among

the nodes was to determine which tasks could be completed

concurrently. Concurrency was determined by the development

of a hierarchy of the formulas used by the NAVSPASUR model.
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Each of the individual tasks were listed with its respective

required input. Tasks which required output from the

completion of other tasks were listed below those tasks.

Tasks which could be executed concurrently were listed on the

same level of the hierarchy. Figures 4.1 and 4.2 contain an

extract of this hierarchy.

From this hierarchy of formulas, the number of

tasks that could be completed concurrently at each level of

the hierarchy ranges from 2 to 14. The levels where only a

few (less than four) represent potential sequential

bottlenecks. These sequential bottlenecks needed to be

overcome for a high level of efficiency to be achieved.

Additionally, the number of FLOPS required varied

considerably among the tasks. Some tasks required as few as

2 FLOPS, while other tasks required over 200 FLOPS. For

example, solving Kepler's Equation by Steffensen's Method

could require as few as 3 FLOPS or as many as 650 FLOPS based

on the speed of convergence. 6 This variance in the number of

FLOPS required by the various tasks presented a potential

problem in load balancing.

The second step in applying this strategy was to

determine the method of scheduling the tasks to be

accomplished among the nodes. A manager-worker algorithm as

described in Chapter III provides an easy method to achieve

6If the error tolerance of less than 10-l is not met, the
NAVSPASUR model halts Steffensen's Method after 20 iterations.

55



Level Variable (Equation)
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(2.37) (2.37)

Figure 4.1 Hierarchy of NAVSPASUR Formulas

load balancing among the nodes. However, for a large number

of small tasks as is the case with the NAVSPASUR model, this

type of algorithm can become communication intensive. A large

communication-to-computation ratio can severely limit speedup

and could possibly cause a parallel algorithm run longer than

the original serial algorithm. In an effort to reduce the
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Figure 4.2 Hierarchy of NAVSPASUR Formulas (continued)

amount of communication in the algorithm, an algorithm that

pre-scheduled tasks was chosen.

With pre-scheduled algorithms, each node knows its

own tasks to accomplish without communicating with a "manager"

node. Additionally, the absence of a "manager" node frees one

more node to assist in completing the required tasks. Despite
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these positive points, pre-scheduled algorithms are not

without their own drawbacks. Pre-scheduling algorithms do not

provide automatic load balancing as is the case with self-

scheduling algorithms. Care must be taken to ensure each node

does essentially the same amount of work. Also, pre-

scheduling algorithms require a fixed number of nodes.

Requiring a fixed number of nodes restricts the flexibility of

algorithm and its potential speedup.

The third step in applying this strategy was to

determine the number of nodes for pre-scheduling. Factors in

determining the number of nodes or cube size include the

potential requisite speedup, the amount of computation

completed between communication messages, potential sequential

bottlenecks, the number of messages required, and efficient

use of all of the nodes. In an attempt to achieve an

appreciable speedup, the algorithm was developed to use a

minimum of four nodes.

The final step in applying this strategy was

assigning specific tasks to each node. Load balancinq and

potential synchronization problems were considered in the

assignment of the tasks to the respective nodes. Often,

communication distances are also considered in assigning tasks

to the nodes; however, with such a small number of nodes the

communication distances were negligible. The diagram in

Figure 4.3 depicts how the tasks were distributed among the

four nodes. Some of the smaller initial tasks were duplicated
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by several nodes in order to limit the amount of communication

and eliminate potential synchronization problems at the

beginning of the algorithm. A complete listing of the source

cone for progran, set, P 3T-4, is contained in Appendix C.

b. Assessment

To establish a baseline to compare the performance

of the parallel program sets with the serial subroutine PPT2,

execution times for PPT2 to predict the position of a single

satellite and a set of satellites, ranging from 12 to 20736,

were measured. The measured times were the elapsed time for

the execution of PPT2 in milliseconds on a single node using

the node's intez.-.al clock. Using ten different sets of

satellite data, the mean execution time for propagating a

single satellite was 11.2 milliseconds. The mean execution

time for PPT2 to propagate 12 to 20736 satellites is depicted

in Figure 4.4. These mean execution times were used to

compute the speedup and efficiency of both parallel program

sets.

(1) Results. Program set P3T-4 was executed with

the same sample satellite sets as were used with PPT2. The

graph in Figure 4.5 showL a comparison of the mean executions

of P3T-4 and PPT2 for a various number of satellites. As one

can see, P3T-4 was nearly two times slower than the original

serial subroutine.
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Node 0 Node 1 Node 2 Node 3

Recovet Compu-Ite2

Compute ecula COmpute secWul Compute tong period Comout secular
correcos- l a, nd correcion - g conecioo- z correction - h
e

Compute long peiod Compute long period Solv Kqple's Copute sectoral
correcton - I corrections - e ed I Equation tam

Comrpute short period Compute short period Caompute short period Compute long period
corrections-landa corrections - e and I corrections - z correction - h

Solve Kepler's Compute short period

Equation correction - h

Collect all team

Compute state vector

Figure 4.3 P3T-4 Algorithm

For a single satellite, the mean execution time

for P3T-4 was 23.3 mii:liseconds as compared to only 11.2

milliseconds for PPT2. A closer look at where the time is

spent reveals the shortcomings of this parallel algorithm.

Table 4.1 shows a comparison of mean execution times for the

one node executing PPT2 and the four nodes executing P 3T-4.
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Figure 4.4 PPT2 Execution Times

The times expressed in the table are the mean f or the ten

sample satellites. The communication time, t,, includes the

time spent sending and receiving messages, plus the time spent

waiting for messages to arrive. The computing time, t,, is

the time each node spent completing its respective tasks.
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Figure 4.5 P'T-4 Execution Times

As seen by the times listed in Table 4.1, two

problems with the algorithm become evident. First,

communication time outweighs the actual computation time for

each node. The causes of the long communication time are

numiber of messages required by this specific partition of

tasks and synchronization problem of nodes waiting to receive
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Table 4.1 P3T-4 Execution Time Breakdown

Algorithm te t. t
(milliseconds) (milliseconds) (milliseconds)

PPT2

(one node) 11.2 NA 11.2

p 3 T-4

node 0 4.3 19.0 23.3

node 1 2.2 15.9 18.1

node 2 2.7 14.7 17.4

node 3 5.8 15.7 21.5

computed values from other nodes. Second and most

importantly, although the actual computation time was reduced,

the total execution time of the parallel algorithm is longer

than the serial algorithm implemented by PPT2.

(2) Improvements. The major source of the problem

is the communication to computation ratio. This parallel

algorithm using four nodes requires 23 messages among the

nodes. The NAVSPASUR model is not computationally intensive

enough to offset this amount of communication. To improve

performance this ratio must be reduced.

One method to reduce the communication to

computation ratio is to reduce the amount of communication.

One way to reduce the number of communications is to

restructure the partitions. However, other partitions using

four nodes were analyzed, yet none could significantly reduce
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the number of messages. One alternative to possibly achieve

any speedup was to partition the computations among fewer

nodes. The diagram in Figure 4.6 depicts the distribution of

tasks for a two node algorithm P3T-2. Although the algorithm

displayed potential in reducing the total execution time to

less than PPT2, speedup would be further bounded by two. A

speedup of two would not outweigh the costs in procuring a

parallel computer merely for satellite propagation.

A second alternative for reducing the

communication to computation ratio is to somehow increase the

amount of computation between messages. The amount of

computation could be increased by computing the intermediate

values for n satellites in an array and sending the array in

one message. The communication would remain essentially

constant and the computation between messages would increase

by a factor of n. An estimate of this improvement may be made

for the mean times in Table 4.1 using speedup and efficiency.

From Chapter III, efficiency is expressed as the following:

E=_ S t(1) (4.1)
p pt p)

where

t(p) =t,(p) +t.(p) (4.2)

If E. is the efficiency of the P3T-4 algorithm computing n

satellites' values between messages, then
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Figure 4.6 P3T-2 Algorithm

Z.- nt(1) (4.3)
p (nt. (p)+ 't. (p))

Solving Equation 4.1 for t(1) and substituting into Equation

4.3 yields
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E. n (t, (p) +÷t (p))E44
S(p) +t. (p) (4.4)

Replacing E by

E= t(1) (4.5)p (t,:(p) + t. (p))

and simplifying yields

t(1)
t. (p) (4.6)

P (t,ý(P) + %___nn

Take the limit as n goes to infinity and the upper bound for

E. is

lim,,.. E,,- t (1) (4.7)

Setting p equal to four and using values from Figure 4.1, E,

is bounded by .48. This implies the maximum speedup of the

modified algorithm would be bounded by 1.92. Again, the

benefit of using this strategy is quite limited.

2. Domain Decomposition -- P3T

The strategy of domain decomposition is to reduce the

NAVSPASUR model's computation time by the concurrent

computation of several satellites' state vectors. Each node

of the hypercube would complete identical tasks on different

satellite data sets, simultaneously. Hence, the ultimate

objective of program set P 3T was to reduce the overall

computation time for several objects in orbit.
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a. Algorithm

Unlike the application of the control

decomposition strategy, the application of the domain

decomposition strategy to the NAVSPASUR model was seemingly

less arduous. First, because each node propagates satellite

data sets independent of the other nodes, there exists no

requirement for communication or synchronization among the

nodes. This lack of communication simplifies the load

balancing and sequential bottleneck problems present in the

P3T-4 parallel algorithm.

Second, because each node may perform the

satellite state vector prediction tasks serially, the existing

subroutine PPT2 may be used with only minor modifications.

Developing a parallel algorithm for predicting an individual

satellite's state vector was a major task for the control

decomposition strategy. Additionally, by using the existing

PPT2 code, the other tasks completed by PPT2 may be requested

by the user using the same control variables as used by the

original PPT2 subroutine. The P3T-4 program set was

restricted to only predicting a satellite's state vector.

Finally, by using the serial subroutine PPT2, this

strategy may be reduced to only developing an algorithm to

distribute the data in a timely manner. Maximum efficiency

will be achieved if the nodes do not have to wait for

satellite data to propagate.
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Intuitively, this strategy seems perfectly

parallelizable. Although the various tasks performed by PPT2

require different computation times, the total execution time

for each node will be essentially the same if it is assumed

that the various tasks are randomly distributed throughout the

input data sets. The concern for this algorithm was the

potential sequential bottlenecks at input/output portions of

the program set. Reading and writing to external files can be

very time consuming. In addition to the actual time spent

reading/writing to an external file, a certain amount of time

is spent to access the file. In order to minimize this time,

the number of calls to read/write to a file should be

minimized.

With the specific iPSC/2 hypercube available,

input/output is completed sequentially. Each node must

compete with the other nodes to read and write to external

files. To minimize time lost to accessing the file cataloging

the set of satellites, a node was devoted to both the

reading/distributing of input satellite data and to the

collecting/writing of the results. The idea of using a single

node to read the data and a single node to subsequent write

the output is simple to implement and proved to be fastest

method to overcome the bottlenecks with the input/output. The

remaining nodes of the hypercube implement the NAVSPASUR model

using a slightly modified PPT2. The diagram in Figure 4.5

depicts how the satellite data is distributed. The cost of
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using this simple algorithm to distribute and collect the data

is the loss of two nodes. The only restriction on the size of

the hypercube required by P3T is that the attached cube must

contain at least four nodes to achieve any speedup. A

complete listing of the source code for program set, P 3T, is

contained in Appendix D.

b. Assessment

(1) Results. The graph in Figure 4.8 depicts the

mean execution time for P3T versus the number of satellites

propagated using hypercubes of four and eight nodes

respectively. p 3T was successful in reducing the overall

execution time to propagate several satellites. Table 4.2

shows the speedup and efficiency of P 3T for a various number

of satellites. As seen in Table 4.2, the speedup achieved

using all eight nodes of the hypercube was approximately three

times larger than the speedup achieved using four nodes. With

this parallel algorithm using six "working" nodes for an eight

processor hypercube and only two "working" nodes for a four

processor hypercube, an increase in speedup by approximately

a factor of three was expected. More notable was the increase

in efficiency using eight versus four nodes. The efficiency

increased from .45 to .67. This increase in efficiency

indicates that P3T applied to a hypercube of greater dimension

could yield even greater speedup and efficiency.
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Figure 4.7 P'T Algorithm

Table 4.2 also indicates that P3T performance

increased somewhat with an increase in the total number of

satellites propagated. Because with this parallel algorithm

the computation to communication ratio does not vary with the

number of satellites, this small increase in performance must

be primarily due to the diminishing impact of the algorithm's
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overhead on total execution time. This overhead includes one

additional message containing the total number of satellites

to propagate from the distributing node to the other nodes;

some small computations by working nodes to determine number

of data sets to receive; and a halting message sent by the

collecting node to the host once all of the nodes are
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Table 4.2 P3T Performance (satellite position prediction)

P 3 T Number of Satellites S, E_

8 nodes 20736 5.31 .66

1728 5.37 .67

144 5.24 .66

12 4.13 .52

4 nodes 20736 1.78 .45

1728 1.80 .45

144 1.79 .45

12 1.66 .33

finished. Because these additional messages and computations

are only completed once in the program, the time cost

associated with this overhead becomes negligible as the number

of satellites propagated is increased. The speedup and

efficiency remained fairly constant for greater than 144

satellites.

To estimate the impact of increasing the amount of

computation on P3T's speedup and efficiency, the execution

time to predict a satellite's position and compute the partial

derivatives of the orbital elements was also measured for PPT2

and P 3T. These results are summarized in Table 4.3. Both

speedup and efficiency improved with this increase in

computation.
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Table 4.3 P3T Performance (satellite position prediction plus
corputation of partial derivatives)

P3T Number of Satellites SP EP

8 nodes 20736 5.48 .69

1728 5.53 .69

144 5.45 .68

12 4.82 .60

4 nodes 20736 1.84 .46

1728 1.86 .47

144 1.96 .47

12 1.82 .46

(2) Improvements. The performance results of this

algorithm using only four and eight nodes indicated a

potential increase in both speedup and afficiency if this

algorithm could be applied to a hypercube of greater

dimension. Because the number of working nodes is not fixed

for this algorithm, P3T could be applied easily to any size

hypercube with no modifications. The efficiency of the

algorithm should increase with the cube dimension until the

time to distribute a separate satellite data to each working

node exceeds the time required by node to propagate a single

satellite. Therefore, a possible improvement in the

algorithm's performance can be achieved by applying the

algorithm to an optimal dimension hypercube.
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Because the hypercube at the Naval Postgraduate

School is limited to eight nodes, a model was used to estimate

the optimal hypercube dimension. The total execution time for

P3T to propagate n satellites with p processors, t(p), can be

modeled by the following expression:

t (p) =tl (p) +t 2 (p) +t, (p) (4.8)

where t. 1 (p) is the time the last node must wait to receive its

first satellite data set, t, 2 (p) is the total time the last

node must wait to receive all of its subsequent satellite data

sets, and t,(p) is the time for each node to propagate each

share of the n satellites.

As described in previous chapter, the iPSC/2 uses

a Direct-Connect Module (DCM) . This module provides an

essentially constant startup time for a message to be passed

between two nodes regardless of the length of the message

path. Hence, the time to send a message between two nodes is

a function of only the size (number of bytes) of the message.

Because all messages between the distributing node and working

nodes are of a constant size (674 bytes), the time of a single

message between the distributing node and each working node is

essentially constant. For this algorithm, there are p-2

working nodes. Denoting the time to send a single message

between the distributing node and a working node as t.(1), the

t. 1 (p) may be modeled by the following:

74



t., (p) :[(p-2) -1] t. (1) = (p-3) t. (1) (4.9)

In order to determine t.(1), several experiments were run

using the specific iPSC/2 located at the Naval Postgraduate

School. The mean value of t.(l) was approximately .693

milliseconds.

A working node's total wait time for subsequent

satellite data sets, tv 2 (p), is a function of the elapsed time

for the working node to propagate a single satellite, the

elapsed time for the distributing node to send a subsequent

satellite data set to the working node, and the number of

satellites the working node must propagate. Because the

distributing node distributes the data while the working nodes

are computing, the wait time is zero if the subsequent

satellite data arrives before the working node is ready to

receive. 7 If the subsequent satellite data arrives after the

node is finished with the previous satellite, the wait time is

the difference between the computing time for the previous

satellite and the elapsed time for the distributing node to

send the node another satellite data set. Because the

distributing node must send a data set to each of the other

working nodes prior to sending a subsequent data set to the

last node, the elapsed time for the distributing node to send

another data set may be also modeled by t. 1 (p) in Equation 4.9.

'If a node is not ready to receive a message from another
node, the message is stored in a local buffer. The time to
read from this buffer is negligible.
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The total wait time is then the wait time for each subsequent

satellite data set multiplied by the number of data sets

received by each working node. Hence, by letting tl represent

the time to propagate a single satellite, t,2 (p) may be modeled

by the expression:

n 0 if t, 1 (p)<tl (4.10)
=, (P p - i) (t '.1(p) -tl) if t '.1(p)>_!tl

Assuming the time for one node to propagate n

satellites, t(1), is

t(1) =n(tl)

The total computation time for each working node,. t,(p), may

be approximated by the continuous function:

tV (p) = n(tl) (4.11)
p7-2

Substituting Equation 4.8 into Equations 3.2 and

3.3, the speedup and efficiency using a total of p processors

may be modeled by the following expressions:

t(l) n(tl)SP-- t--() t ,I (P) + t,2 (P) +÷to (P)
(4.12)

E = 3SP= n(tl)p p pIt.,(p) ÷t.2 (p) +to(p) ]

Setting tl equal to 11.2 milliseconds and tm(p) equal to .693

milliseconds, t(p), SP, and EP were computed using Equations
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4.9 - 4.12. Figures 4.9 and 4.10 depict the estimates of

t(p), S., and EP for propagating 1728 satellites using 4 to

1024 processors (a cube dimension of 2 to 10). Using the

above model, P3T is capable of achieving a maximum speedup

over 16 with a corresponding efficiency of approximately 90

percent for a hypercube of dimension 5 (25 nodes) . A

hypercube of dimension 4 achieves a speedup of nearly 14 and

an efficiency of almost 90 percent. Although these graphs are

only estimates of the actual values of speedup and efficiency,

they correspond closely to the actual timed results for four

and eight node size hypercubes and provide a good indication

of the parallel computing potential of this algorithm for

higher dimension hypercubes.

Another possible improvement to this domain

decomposition algorithm is to eliminate the need for the

distributing and collecting nodes. Although the iPSC/2

located at the Department of Mathematics, Naval Postgraduate

School is not capable of concurrent input and output,

concurrent file systems are available. Separate I/0 nodes

allow the computing nodes of a hypercube to concurrently read

and write to external files. A concurrent file system would

eliminate the need of the distributing and collecting nodes.

Additionally, the INTEL Concurrent File System (CFS) allows

for a common file pointer to be maintained among the computing

nodes, minimizing overhead in algorithm. Depending on the

efficiency of the I/O nodes, a further increase in the overall
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Hypercube Sizes

algorithm could be expected. For further information on the

INTEL Concurrent File System see (iPSC/2 User's Guide, 1990,

7-1 - 7-18).
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V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The ultimate objective of this thesis is determine the

parallel computing potential of the NAVSPASUR satellite motion

model. From the results given in Chapter IV, vectorization

and control decomposition strategies proved not beneficial in

significantly reducing the computation time of the NAVSPASUR

model. Very few apparent vector operations exist in the

model, and any attempt to transform the formulas into vector

operations became algebraically overwhelming. Although the

analytic formulas of the NAVSPASUR model are quite lengthy and

complex, they proved to be not computationally intensive

enough to warrant decomposition of the algorithm by tasks.

On the other hand, the domain decomposition strategy

showed promise if the satellites are propagated in a batch

mode. The P 3T algorithm was simple to apply. The algorithm

provided the flexibility to vary the dimension of the

hypercube and to easily modify the model itself. Although

only a maximum efficiency of .67 was achieved, the potential

efficiency was artificially bounded by the number of nodes

available with the specific hypercube multi-computer used.

Having a maximum of only eight nodes available, the efficiency

of P3T is bounded above by .75. Using the model of P3T's total

execution time described in Chapter IV, it was shown that a
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maximum efficiency of just under 90 percent could be achieved

with a hypercube consisting of 16 nodes. The corresponding

speedup factor of nearly 14 would significantly reduce the

time to predict the state vectors for several thousand

satellites.

The success of P3T manifests several possible areas of

future research. One area would be to apply P3T to higher

dimension cubes and validate the estimates of speedup and

efficiency using more than eight nodes. Because the number of

working nodes is not fixed for this algorithm, P3T could be

applied easily to any size hypercube with no modifications.

Once the optimal size is found, one could attach several sub-

cubes of the optimal dimension and determine the benefit of

propagating several smaller catalogs of satellite data instead

of propagating one large catalog.

Another possible area of research would be to modify the

current satellite motion model to increase the accuracy of its

predictions. The results in the previous chapter showed an

increase in performance of the P3T if the amount of

computation was increased. Hence, greater accuracy could be

achieved in far less time using the P3T algorithm than the

time using the original serial algorithm. Additionally, from

these results, the parallel computing potential of satellite

motion models that are more computationally intensive would be

greater. For example, semi-analytic models which combine the
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benefits of analytic and numerical models might be good

candidates.

Overall, the main lesson learned from this thesis is that

satellite position prediction can be made more timely through

parallel computing. Although the best method of

parallelization might vary depending on the specific model

used, parallel computing is a viable option to achieve timely

satellite position prediction for the growing number of

objects in orbit around the Earth.
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APPENDIX A

INPUT/OUTPUT OF PPT2

This appendix contains a listing of the primary variables

used by NAVSPASUR' subroutine, PPT2. Tables A. 1 - A. 4 are

extracted from (Solomon, 1991, pp. 12 - 14). Table A.5 was

interpreted from the NAVSPASUR source code.

Table A.1 PPT2 Calling List

Variable Definition Input Output

IND control variable I

TM time 1 0

KZ 0O for inertial coordinates I
1 for Earth-fixed
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Table A.2 PPT2 Input Control Variables

Variable Option

KF(l) IND

0 <0 Position, no partial derivatives

0 0 Position, partial derivatives

0 1 Secular recovery

0 2 Epoch update

KZ

0 Inertial coordinates

1 Earth-fixed coordinates

KF(3)

0 Secular and drag corrections only

1 Secular, drag, and periodic corrections

>1 Secular, drag, periodic, and
sectoral/tesseral corrections

KF(2), KF(4)- Not used by PPT2
KF(10)
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Table A.3 PPT2 Common Blocks

Block Variable Description Input Output
CONS A(64) constants set by I

subroutine CONS1

PPT F(25) stored mean elements I 0

OSC (10) osculating elements 0

KF(10) control variables I 0

CF(10) used for appearance I 0
prediction

BS(3,4) observation stations I
position (R,2,A-,f1)

U(3) 0

V(3) 0

W(3) w 0

R r 0

_ VEL (3) t, velocity 0

DCSUB PE(6,8) partial derivatives 0

S.. others not used in
PPT2

FOREO RHO ((3) P 0

RHOS p 2  0

HDR 0.P 0

HDV 2-t 0

RDV 0. t 0

DEL Af 0

ITER iteration counter 0
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Table A.4 Array F

Index Variable Definition Input Output

1 i" mean mean anomaly I 0

2 m mean motion I 0

3 M2 first decay term I 0

4 M3 second decay term I 0

5 e" eccentricity I 0

6 g" mean argument of I 0
perigee

7 h" mean ascending node I 0

8 cos I" cosine inclination I 0

9 t epoch I 0

10 # revolution number I 0

11 dg"/dl" O 0

12 dh"/dl" 0

13 a" mean semi-major axis 0

14 A 0

15 sin I" sine inclination 0

16 _ 0

17-25 not used in PPT2
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Table A.5 Array OSC

Index Variable Definition

1 co.' f cosine true anomaly

2 sin f sine true anomaly

3 1 osculating mean anomaly

4 e osculating eccentricity

5 g osculating argument of perigee

6 h osculating ascending node

7 cos I cosine osculating inclination

8 a osculating semi-major axis

9 Al secular and drag correction term for 1

10 not used by PPT2
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APPENDIX B

INTEL iPSC/2 SPECIFICATIONS

This appendix contains a summary of the iPSC/2 hypercube

multi-computer specifications as described in (iPSC/2 User's

Guide, 1990, pp. 1-1 - 1-11). The exact performance values

were obtained from (Arshi, 1988, pp. 17 - 22).

iPSC/2

System Resource ManaQer (Host)

Central Processing Unit INTEL 80386 (4 MIP)

Numeric Processing Unit INTEL 80387 (250 KFLOP 64-bit)

Memory 8 Mbyte

External Communication Ethernet TCP/IP local area

network port

Operating System AT&T UNIX, Version V, Release

3.0

Nodes

Node Processor INTEL 80386 (4 MIP)

Numeric Co-processor INTEL 80387 (250 KFLOP 64-bit)

Operating System NX/2
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Internal Communication

Direct-Connect2 Routing Message Latency -- 350 gsec

Message Bandwidth -- 2.8

Mbytes/sec
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APPENDIX C

P 3T-4 SOURCE CODE LISTING

This appendix contains the listing of host and node

programs comprising P3T-4 program set. The host program reads

the satellite data, loads the node program, and writes the

results to an external output file. The node program contains

the instructions for the four nodes to complete their

respective portions of the P3T-4 parallel algorithm. The node

program is limited to only satellite state vector prediction.

Host ProQram:

program P3T4h

* This host program reads the satellite data from a
* external file, loads the program P3T-4n on the hypercube
* nodes, and writes results to external output file.

implicit real*8 (a-h,o-z)

dimension sat(49,6000),end(49,1)
integer pid,msglen, eof

data pid/0/,msglen/392/
data isat/l/

call setpid(pid)

* Load node program P3T4n on nodes

print*,'host loading nodes'
call load('p3t4n',-l,pid)

* Read satellite data and send data to nodes until reach
* end-of-file

open(unit-10, file-'/usr/phipps/in4',form-'unformatted')
read (unit-10,iostat-eof) (3at(j,i),j-1,49)

20 if (eof.ge.0) then
call csend(5,sat (l,isat),msglen,-l,pid)
isat-isat+l
read (unit-10,iostat-eof) (sat(j,isat),j-l,49)

* Receive results from nodes
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call crecv (99, sat (1,isat-1) ,msglen)
go to 20
endif

* Send message for nodes to halt and clear cube for next process

call csend (5, end,.msglen, -l,pid)
close (unit-lO)
call killcube (-1,-i)

* Write results to external file

open (unit-1li,file-' /usr/phipps/out4 , form-' unformatted')
do 22 i-l,isat-l

22 write (111*) (sat(j,i),j-l,49)
close (unit-il)

stop
end
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Node ProQram:

program P3T4n
* This node program is a parallel code for satellite
* position prediction using the NAVSPASUR model. This
* program employs four nodes using the control
* decomposition strategy. The specific tasks for each
* node are separated by logical if statements.

implicit real*8 (a-h,m-z)

real*8 kz

* Declare cube specific function and variables as integers

integer mynode,mclock,msgwait,myhost
integer mynod,.pid,msglen,hostid

conunon /ppt/f(25),osc(9),u(3),v(3),w(3),vel(3),r,tm,kz
common /cons/c(25)
conunon /n/theta2, eta0,eta20,esqO
comnmon /g/g2,g2p, g3,g4,g5
common /crit/t2
common /sec/agda,agde,agdi,agdl,agdg, agdh

data pid/O/,msglen/8/

hostid-myhost()
mynod-mynode()

* Synchronize nodes

call gsync()

Nodes set constants and receive data from host

call consi
call crecv(5,f,msglen*49)

Nodes continue to execute ppt3 until catalog of
satellite data i3 exhausted

1100 if(tm.eq.O.OdO) go to 1101

* Node 2 computes new T2 and sends to other nodes

if(mynod.eq.2)then
call critincl
call csend(mynod,t2,msglen,-1,pid)

endif

* Nodes execute respective portion of subroutine ppt3

call ppt3(mynod)

Node 0 send results to host

if(mynod.eq.0)then
call csend(99,f,msglen*49,hostid,pid)

endif
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* Repeat until catalog of satellite data is exhausted

call crecv(5,f,msglen*49)
go to 1100

1101 continue

* End main program

stop
end

subroutine ppt3(mynod)

* This subroutine preschedules the tasks for each node
* numbered 0 through 3. Tasks are partitioned by logical
* if statements

* Declare variables

implicit real*8 (a-h,m-z)
real*8 kz

* Declare cube specific function and variables as integers

integer mynode,mclock,msgwait
integer mynod,pid,msglen
integer msg4(10)

dimension msgl(2),msg3(2)

* Define common blocks

common /ppt/f(25),osc(9),u(3),v(3),w(3),vel(3),r,tm,kz
common /cons/c(25)
common /n/theta2,eta0,eta20,esqO
common /g/g2,g2p, g3,g4,g5
common /crit/t2
common /sec/agda, agde,agdi,agdl,agdg, agdh

equivalence (msgl(1),osc(6)), (msg3(1),osc(lf)

data pid/O/,msglen/8/

if (mynod.ne.2) then
esq0-f (5) *f (5)
theta2-f (8) *f (8)
eta20-1.OdO-esqO
eta0-dsqrt(eta20)

*000000000000000000000000000000000000000000000000000000000
if(mynod.eq.0)then

* Post asynchronous receive message commands
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msg4 (1)-irecv (2,t2,msglen)
msg4 (2)-irecv (1 osc (5) ,msglen)
msg4 (3) -irecv (3, agda,msglen*6)

* Recover a from mean orbital elements

call recover

* Send a to all nodes

call csend(mynod,f(13) ,msglen,-1,pid)

* Compute g2.,g2p,g3,g4,g5

call gamma
hi-tm-f (9)

* Compute osculating l,e,a

osc (9) -((f (4) *hl+f (3)) *hl+f (2)) *hl
osc (3) -pie (osc (9)+f (1))
f (14) --4. OdO*f (13)*f (3) /(f (2) *3.OdO)
f (16)-f (5) *eta2O*f (14) /f (13)
osc(4)-dminl(dmax1(O.OdO,f(5)+f(16)*hl),.99999999dO)
osc (8) -dmaxl (1.OdO, f(13) +f (14) *hl)

* Send 1, e and a to other nodes

call message(osc(3),osc(4),osc(8),mynod,-l,O)

* Compute sin I

f (15) -dsqrt (1.OdO-theta2)

R ieceive t2 from node 2

call msgwait (msg4 (1))
msg4 (4)-irecv (2,msg3, 2*msglen)

* Make preliminary computations for edil

tt2=theta2*t2
p1=(-8.OdO*tt2-3.OdO) *theta2+l.OdO
p2-(-4O.dO*tt2-11.OdO) *theta2+l.OdO
vlel- . 125dO*g2p*p2- (5. OdO*g4*plI (12. OdO*g2p))

p1- (-24. OdO*tt2-9. OdO) *theta2+1 .OdO
p2- (1. 25d0+. 9375d0*esqO) *g5
vle2. (pl*p2+g3) *eta2O*f (15) /(4. OdO*g2p)
vll2-vle2+3 .OdO*eta2O*O . 5625d0*esqO*f (15) *g5*pl/g2p
p1- (-16. OdO*tt2-5. OdO) *theta2+1 .OdO
vle3-pl*f (15) *eta2O*esqO*g5*35.OdO/ (-3.84dO2*g2p)

* Receive g from node 1

call msgwait (msg4 (2))
msg4 (5) -irecv(1,DE,msglen)

* Compute edil
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cosg-dcos (osc (5))
sing-dsin (osc (5) )

p1-4 .OdO*cosg**3-3 .OdO~cosg
p2-2 . dO*sing*cosg
edli- (vlel*p2-vll2*cosg-vle3*pl) *etaO

* Receive cos f, sin f from node 2

call msgwait (msg4 (4))
msg4 (6)-irecv(2,OS,msglen)

* Compute ed2l

w22- (1.OdO+osc (4) *osc (1)) *(2+osc (4) *osc (1)) /eta2O
pl-(3.OdO-4.OdO*osc(2 -)**2)*osc(2)*(l.OdO-2.OdO*sing**2)
p1- (4. OdO*osc (1)**2-3 .OdO) *osc (1)*p 2+pl
p3- (1.OdO-2 .OdO*sing**2) *osc (2) +osc (1)*p2
p4F3. OdO* (1.OdO-theta2)
p5-- . OdO+3 .OdO*theta2
eta3 l-eta2O*etaO
ed2l- (p1* (w22+ . OdO/3 .OdO) +p3* (1.OdO-w22) )*p4
ed2l- (ed2l+osc (2) *(w22+1 .OdO) *p5*2.OdO) *eta3O*g2p/-4.OdO

* Send ed2l to node 2

call csend(mynod,ed2l,msglen, 2,pid)

* Compute edl and a

edl-edll+ed2l
p1- (cosg*cosg-sing*sing) *(osc (1)*osc (1)-osc (2) *osc (2)) -

& P2*2.OdO*osc(1)*osc(2)
p6-(1.OdO+osc(4) *osc(1) )**3
osc (8) -osc (8)* (1. OdO+g2p/eta2O* (p5* (p6-eta3O) +

p4*p6*pl))

* Receive sectoral corrections fromi node 3

call magwait (msg4 (3))
DL-edl+agdl
osc (8) -osc (9)+agda

* Receive DE from node 1

call msgwait (msg4 (5))
msg4 (7)-irecv(l,msgl,msglen*2)

* Compute final value for e and 1

esq-de**2+dl**2
osc (4) -dsqrt (esq)
sinl-dain (osc (3))
cosl-dcos (osc (3))
osc (3) -artnq (DE*sinl+DL*cosl,DE*cos1-DL*sinl)

* Solve Kepler's eqn

call kepler
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if(kz.ne.O.OdO) cf-c (12)
eta2-1.OdO-esq
r-osc (8)*eta2/ (1.OdO+osc (4) *osc(1))

* Receive final computations from other processors

call magwait (msg4 (7))

call magwait (msg4 (6))

* Compute g

osc (5) -os-osc (3) -osc (6)

* Compute position and velocity vectors

cosg-dcos (osc (5))
sing-dsin(osc (5))
cosh-dcos (osc (6))
sinh-dsin (osc (6))

pl-sing*oac (1)+cosg*osc (2)
p2-cosg*osc (1) sing*osc (2)
sini-dsqrt (1.OdO-osc (7) **2)

u (1) cosh*p2-sinh*pl*osc (7)
u (2) -sinh*p2+cosh*pl*osc (7)
u (3) -pl*sini

v (1) =cosh*pl-sinh*p2*osc (7)
v (2)--3inh*pl4~cosh*p2*osc (7)
v (3) -p2*3ini

w (1) -inh*sini
w (2) =-cosh*sini
w (3) -ose (7)

p3-oac (4) *osc (2)
p4-03c (4) *osc (1) +. OdO
p5-dsqrt (eta2*osc (8))

do 11 i-1,3
11 vel (i)=(p3*u(i)+p4*v(i) )/p5

vel (1)-vel (1)+cf*r*u(2)
vel (2) -vol (2) -cf *r*u (1)

* End for node 0

endif

*00000000000000000000000000000000000000000000000000000000

* Begin node 1

if (mynod.eq.1) then

msg4 (1)-irecv (0, f(13) ,msglen)
msg4 (2)-irecv (2, t2,msglen)
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msg4 (3) -irecv (3, adga,msglen*6)

* Compute sin i and tan i

f (15) -dsqrt (1.OdO-theta2)
tani-f (15)If (8)
hi-tm-f (9)
p1-i .OdO-5.OdO*theta2
p2--35 .OdO+24 .OdO*eta0+25 .Od0~eta20
p3-90. OdO-i92 . d0*eta0-i26. OdO*eta20
p4-385. OdO+360 .OdO*eta0+45 . dO~eta20
p5--270 .OdO+126 .OdO*eta20
p6-385. OdO-189. OdO*eta20
theta4-theta2*theta2

* Receive a from node 0

call msgwait (msg4 (1))

* Compute g2,g2p,g3,g4,g5

call ganuna

* Compute g
osc(9)-( (f(4) *hi+f (3)) *hi+f (2)) *hl1
f(1i)--l.5d0*g2p*pi+.09375d0*g2p**2* (p2+p3*theta2

& ~+p4*theta4)+.3i25d0*g4* (21.0d0-9.0d0*eta20+p5*theta2
& +p6*theta4)
qi-f(2) *f(13) **l.5d0

osc (5) -pie (f (6) +f (ii)*osc (9))

* Send g to all nodes

call csend(mynod,osc(5) ,msglen,-i,pid)

* Complete preliminary computations to solve for die and dli

cosg-.dcos (osc (5))
sing'-dsin (osc (5))
p3- (3. OdO-4 .OdO*sing**2) *sing
p4-2. 0d0*cosg**2- . OdO
p5-2. OdO*sing*coag
p6-cosg*cosg-sing*sing

* Receive t2 from node 2

call msgwait (msg4 (2))
msg4 (4) -irecv (2,msg3,msglen*2)

tt2-theta2*t2
pi- (-B. 0d0*tt2-3 .OdO) *theta2+ . OdO
P2-(-40.dO*tt2-11.0d0) *theta2+i.OdO
vlel-0 - 25d0*g2p*p2- (5. OdO*g4*plI (12. OdO*g2p))
vlel-vlel*f (5) *eta2O
p1-(-24.0d0*tt2-9.0d0) *theta2+l.OdO
p2=-(1.25d0+.9375d0*esq0) *g5
vle2' (pl*p2+g3) *eta20*f (iS) /(4. OdO*g2p)
pl-(-16.0d0*tt2.-5.0dO) *theta2+l.OdO
vle3mpl*f (15) *eta2O*esqO*g5*35.OdO/ (-3.84d02*g2p)
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* Compute die arnd dli

dles-vlel*p4+vle2*sing+vle3 *p3
dliin-f (5) *dle/ (eta2O*tani)

* Receive 1, e and a from node 0

call message(osc(3),osc(4),osc(8),mynod,0,1)

* Receive cos f, sin f and r from node 2

call msgwait (msg4 (4))

* Compute d2i

p1- (4. OdO*osc (1)**2-3 .OdO) *osc (1)*p4
pl-pl-p5* (3. OdO-4 .OdO*osc (2) **2) *05c(2)
p2-p4*osc (1) .p5*osc (2)
p3- (osc (1)*osc (1)-osc (2) *osc (2) )*p6.2 . OdO*p5*osc (1)*osc (2)
d2i- ((p1+3. OdO*p2) *f (5) +3. OdO*p3) *f (15) *f (8) *g2p

* Compute d2e

w20-osc (l)* (3. OdO+osc (4) *osc (l)* (3 .OdO+osc (4) *osc (1)))
p4-etaO+1.OdO/ (l.OdO+eta0)
p5- . OdO-theta2

d2e"0. 5d0*g2p* ((3. OdO*theta2l . OdO) *(w20+f (5) *p4)
& +3.Od0*p5*(w20+f(5))*p3-eta20*p5*(3.OdO*p2+pl))

* Compute di and de

di-dli+d2i
de-dle+d2e

* Receive sectoral corrections

call msgwait (msg4 (3))

* Compute DE and send to node 0

DE-de+osc (4) +agde
call. csend (mynod, DE,msglen,0, pid)

* Compute DI

p1- (f (8) +1.OdO) /2. OdO
p2-dsqrt (p1)
p3-dsqrt (1 .OdO-pi)
DI-p3+.5dO*p2* (di+agdi)

* Receive osc(6) and PH from %ode 3

call message (osc (6) ,DH,duxnmy,mynod,3,1)

* Compute final cos i and h and send to node 0

osc (7)-i. OdO-2.0d0* (DI**24PH**2)
sinh-dsin (osc (6))
cosh-dcos (osc (6))
osc (6)-artnq(DI*sinh+DH*cosh,DI*tcosh-DH*sinh)
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call csend(mynod,msgl,rnsglen*2, 0,pid)

* End of node 1

endif

*11111111111111111111111111111111111111111111111111111111
*33333333333333333333333333333333333333333333333333333333

* Begin node 3

if (mynod.eq.3) then

msg4 (1)-irecv (0, f(13) ,msglen)
mag4 (2) -irecv(2,t2,msglen)
msg4 (3)-irecv(1,osz (5) ,msglen)

sini2- . OdO-theta2
f (15) -dsqrt (sini2)
hi-tm-f (9)
oac (9) -hl* (f (2) +hl* (f (3) +hl~f (4)))
theta4-theta2*theta2
p1-i. OdO-5 .OdO*theta2
p2--35. OdO+24 .OdO*etaO+25 . 0d0'eta20
p3-90. OdO-192 . 0d*eta0-126 . dO~eta2O
p4-385. OdO+3 60. OdO*eta0+45. OdO*eta20
p5--270 .OdO+126 .OdO*eta20
p6-385. OdO-189 .OdO*eta2O
p7--5. OdO+12 . 0d*etaO+9. OdO*eta2O
p8-35. 0d0+36. OdO*etaO+5 . 0d0eta20
p9-3. OdO-7 .OdO*theta2

* Receive a from node 0

call msgwait (msg4 (1))

* Compute g2,g2p,g3,g4,g5

call ganmma

* Compute h

f (12) -(-3. OdO*g2p+. 375d0*g2p**2
& *(p7..p8*theta2)+l.25d0*g4*(5.OdO..3.OdO*eta2O)*p9)*f(8)
ql-f(2) *f (13) **1.5d0
f(12)-f (12) /ql
if (kz .ne.0. OdO) cf-c (12)

osc (6) -pie (f (7) if (12) *osc (9)) -cf* (tm-c (1))

* Send h tnode 2

call csend(mynod,osc(6) ,msglen,2,pid)

* Perform preliminary computations for sectoral corrections

f (1l)--1.5dO*g2p*p1+.O9375dO*g2p**2* (p2+p3*theta2
& +p4*theta4)+.3125d0*g4*(21.OdO-9.OdO*eta2O+p5*theta2
& +p6*theta4)

agdal0. OdO
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call sector (hl)

* Receive t2 from node 2

call msgwait (msg4 (2))
msg4 (4)-irecv(2,msg3,msglen*2)

* Complete preliminary computations to compute sini dlh

tt2-theta2*t2
pl=(40.OdO*tt2+16.OdO) *tt2+30Od0
p2- (2. 0d02*tt2+80 .OdO) *tt2+11 .OdO
vlhli-(5.OdO*g4*pl/(12.OdO*g2p)-.125*g2p*p2)*f(15)*esqo,*f(8)

p2-4 .OdO+3 .OdO*esqO
p3- (-24. QdO*tt2-9. OdO) *theta2+1 .OdO
vlh2i-n( (f (5) *f (8) *.25d0) Ig2p) *(g3+ (5. OdO*g5/16. OdO) *p2*p3

&+15 .OdO*g5* (f (15) **2) *p2*pl.'8 .OdO)

P2=(-8.OdO*tt2-2.5dO) *theta2+O 5d0
p3-2. OdO*p11 . OdO
vlh3i-(-35. OdO*g5*esqO*f (5) *f (8) ) *(p2+p3*f (15) *f (15))

&/ (576. OdO*g2p)

* Receive 1, e and a from node 0

call message(osc(3),.osc(4),,osc(8),.mynod,0,,l)

* Receive g from node 1

call magwait (msg4 (3))

* Compute sectoral corrections and send to all nodes

agda-O .OdO
agde-O .OdO
agdi- . OdO
agdl- . OdO
agdg-0.OdO
agdh- . OdO

call 3ector(hl)

call csend (mynod, agda,msglen*6, -1,pid)

* Compute sini dlh

cosg-dcos (osc (5))
sing-dsin (osc (5))
p1-2. OdO*sing*cosg
p2.-(4.Od0*cosg**2-3.0d0) *cosg
siriidlh-vlhli *p1+vlh2i*cosg+vlh3i*p2

* Receive coaf, sinf from node 2

call msgwait (msg4 (4))

* Compute sini d2h

wll-artnq (osc (2) ,osc (1)) +osc (4) *osc (2) -pie (osc (3))

p2-2. 0dO*cosg**2-l. .OdO
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p3- (4. 0d0*osc (1)**2-3 .OdO) *Osc (1)
p 4 -(3 .OdO-4 .OdO*osc (2) **2)*osc(2)
p5=p1*(6.0dO*osc(1)**2.-3.OdO)+6.Od0*p2*osc(1)*osc(2)
p6 -(pl*osc (1)+p2*osc (2) )*3.OdO
w21-p5+ (p6+pl*p3+p2 *p4 ) *osc (4)
sinid2h-'-0 5d0*g2p*f (B) *f (15) *(6. 0d0*wl7-w2l)

* Compute DHi and send osc(6) and DHi to node 1

DM-O .5dO* (sinidlh+sinid2h+agdh) /dsqrt (0.5d0+O .5d0*f (8))
call message(osc(6) ,DH,O.OdO,mynod,l,0)

* End of node 3

endif

*333333333333333333333333333333 33333333333333333333333333

else

*222222222222222222222222222222222222222222222222222222222

* Begin node 2

msg4 (l)-irecv(0,f(13) ,msglen)
msg4 (2)-irecv(l,osc (5) ,msglen)
msg4 (3)-irecv(3,osc(6) ,msglen)

* Perform preliminary computations for dlz

f (15) -dsqrt (1.OdO-theta2)
tt2-theta2*t2
esqO-f (5) *f (5)
eta20=l .OdO-esqO
eta0-dsqrt (eta20)
eta3O=eta2O*etaO

* Receive a from node 0

call msgwait (msg4 (1))

* Compute g2,g2p,g3,g4 and g5

call gamma

* Compute dlz

pl- (eta30-l .OdO) * .125dO
p2-( (-40O.d0*tt2.-l1.OdO) *theta2+1.OdO) *g2p
p3- 1 0 . OdO*g4/ (3. 0d0*g2p)
p4 ((-8. 0d0*tt2-3 .OdO) *theta2+1) *p3
p5- (20. 0d0*tt2+8 .OdO) *tt2+1 .OdO
p6m(10.OdO*p5+1.OdO) *g2p
p7= (2. OdO*p5+1 .OdO) *p3
p8-25 . 0d*esqo*tt2*tt2*theta2* (g2p- .2d0*p3)
p9- ((-2. 0d02*tt2-33 .OdO) *theta2+1 .OdO) *g2p
plO-((.40.0d0*tt2-~9.0d0) *thet.22+1.OdO) *p3

.vlsl-pl* (p2-p4) -. 125d0*esqO*f (8) *(p6-p7)
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£ +p8-.O625d0*esq0*(p9-plO)

pl-eta0+1.OdO/ (l.OdO+etaO)
p2-f (8) /(1. OdO+f (8))
p3-4.OdO+3 .OdO*esqo
p4-(-24.OdO*tt2-9.0d0) *theta2+l.OdO
P5- (esq0-cta3O) *3* OdO+l11.OdO
p6- (20. OdO*tt2+8 .OdO) *tt2+ . OdO
p7- (pl+p2) /4. OdO
p8-(g3+.3125d0*p3*g5*p4) /g2p
p9..p5*. 15625d0*g5*p4/g2p
plO-.(l.OdO-f (8)) *.46875d0* (p6*2.OdO+1.OdO) *p3*g5*f (8) /g2p
vls2in(p7*p8+p9+plO) *f (5) *f (15)

p7-3. 0d0*eta3O-3. adO- (2. OdO+p2) *esqO
p8-(-16.OdO*tt2-5.OdO) *theta2+l.OdO
p9- (1.OdO-f (8) )*f (8) *.060763884d0*esqO* (1.OdO+4 .OdO*p6)
vls3-(p7* .030381944d0*p8-p9) *f (15) *f (5) *g5/g2p

* Receive g from node 1 and compute dlz

call msgwait (msg4 (2))

sing-dsin (osc (5))
cosg-dcos (osc (5))
p11-2. OdO*sing*coag
p12-2. 0d0*cosg**2-l .OdO
p13- (cosg~cosg-sing*sing) *cosg-.2 .OdO*cosg*sing*sing

dl z-vlsl *pll+vls2*cosg+vls3 *p13

* Receive 1, e, and a from node 0

call message(osc(3),osc(4),osc(8),mynod,0,1)
msg4 (4) -irecv (0,ed2l,msglen)

* Solve Kepler's equation and send cosf, sinf to all nodes

call kepler

call csend(mynod,msg3,msglen*2, -l,pid)

* Complete preliminary computations for d2z

w17-artnq (osc (2) ,osc (1)) +osc (4)*osc(2) -pie (osc (3))
p3-(4.0d0*osc(l) **2-.3.OdO) *os0(1)
p4- (3. OdO-4 .OdO*osc (2) **2)*oac(2)
p5-pll* (6. OdO*osc (1)**2-3 .OdO) +6. OdO*p12*osc (1)*osc(2)
p6- (pll*osc (1)+pl2*osc (2)) *3.OdO
w21...p5+ (p6+pll*p3+pl2*p4)*oac(4)
p7 (-5. OdO*theta2+2 .0d0~f (8)+3. OdO) *w2
pa- (-5. OdO*theta2+2*f (8) +1.OdO) *w17

* Receive ed2l from node 0

call msgwait (msg4 (4))

* Compute d2z

d2z--f (5) *ed2l* (p1-i. OdO) /eta30- (6. 0d0*p8-p7) *g2p* . 25d0
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* Receive h form node 3

call msgwait (msg4 (3))

* Receive sectoral corrections

call crecv (3, agda,msglen*6)

* Compute OS

OS-csc (3) +osc (5) +osc (6) +dlz+d2z+agdg

Send OS to node 0

call csend(mynod,OS,msglen, 0,pid)

End of node 2

*22222222222222222222222222222222222222222222222222222222

endif

* Return to main program

return
end

*** ******** ** *** *** ********** *** **** *** ********** ** * *

function pie (x)

* This double precision function computes value of
* x mod 2*pi

implicit real*8 (a-h,m-z)

pi2-6. 283185307ld0
pie-dmod (x,pi2)
if (pie) 90, 91, 91

90' pie-pie+pi2

91 return
end

function artnq(tl,t2)

This double precision function computes inverse tangent of tl/t2
for range 0 to 2*pi

implicit real*8 (a-h,m-z)

if (dabs (tl) -dabs (t2)) 100,104,104
100 artnq-.datan(tl/t2)

if (t2) 101,102,102
101 artnq-artnq+3.14159265358979d0

go to 105

102 if (tl) 103,105,105
103 artnq-artnq+6.28318530717959d0

go to 105
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104 artriq-atan(-t2/tl)+l.57079632679489d0

if (t1)101, 105, 105
105 return

end

subroutine recover

* This subroutine recovers the value of a"

* iteratively from m

implicit real*8 (a-h,m-z)
real*8 kz

coimmon /ppt/f(25),osc(9),u(3),v(3),w(3),vel(3),r,tm,kz
commnon /cons/c(25)
commnon /n/theta2, eta, eta2, esq

f (13)-f (2) ** (-2.0d013 . OdO)

do 110 i-1,5
g2p-c (3)/I(f (13) *eta2) **2
g4-c (5)1 (f (13) *eta2) **4
p1- ((35. OdO*theta2) -30. OdO) *theta2+3 .OdO
p2-25. OdO*eta2+144 . 0d0eta+l05 .OdO
p3--90. 0d0*eta2-96. OdO*eta+30 .OdO
p4-25. OdO*eta+16. 0d0*etal5 . OdO
p5-3. 0d0*theta2- . OdO

110 f(l3)=((1.0d0+1.5d0*g2p*eta*p5+.09375d0*g2p**2
& * (p4+theta2* (p3+p2*theta2) )+.9375d0*g4*eta*esq*pl)
& /f(2))**(2.0d013.OdO)

return
end

subroutine gammna

* This subroutine computes the dimensionless quantities

implicit real*8 (a-h,m-z)
real*8 kz

commnon /ppt/f(25),osc(9),u(3),v(3),w(3.),vel(3),r~tm,,kz
commnon /cons/c (25)
commnon /n/theta2, eta0, eta20, esqO
commnon /g/g2,g2p,g3,g4,g5

g2-c (3) If (13) **2
g2p-g2/eta2O**2
g3-c (4) /(f (13) *eta20) **3
g4-c (5) /(f (13) *eta20) **4
g5-c (6) /(f (13) *eta2O) **5

return
end
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subroutine critinci

* This subroutine computes the value of T2

implicit real*8 (a-h,m-z)
real*8 kz

coimmon /ppt/f(25),osc(9),u(3),v(3),w(3),vel(3),r,tm,kz
common /n/'theta2, eta0, eta20, esqO
commgon / crit/t2

theta2-f (8) *f (8)
t1l. OdO-5 .OdO*theta2
beta-l.0d02/ (2.OdO**11)

p3-beta*tl1 t 1
p1-dexp (-p3)
p2- . OdO+pl
plex-pi *pl
p4-i .OdO
p3ex--0 .5d0~p3

do 210 i-2,13
if (i le .11)p2-p2* (1. 0d+ple;ý4
p1 ex-plex~ pl ex
p4-p4+p3ex

210 p3ex--p3*p3ex/dble (i+1)

t2-p2*p4*beta*tl

return
end

subroutine kepler

* This subroutine solves Kepler's Equation using Steffenson' s

* Method and then computes cos f and sin f

implicit real*8 (a-h,m-z)
real*8 kz

common Ipptlf(25),osc(9),u(3),v(3),w(3),vel(3),r,tm,kz

e3-osc (3)
do 410 i-1,20

e i-e3
e3-osc (3) +osc (4) *dsin (e3)
if (dabs (e3-el) .lt.1.Od-08) go to 420
e2-e3
e3-osc (3) +osc (4) *dsin (e3)
if(dabs(e3-e2).lt.1.Od-08) go to 420

410 e3-e3+ (e3-e2) **2/ (2. 0d0*e2-el-e3)

420 cosf-dcos(e3)
el-i.0dO-osc(4) *cosf
osc (1)- (cosf-osc (4))/Id
eta-dsqrt (1.OdO-osc (4) **2)
osc (2)- (eta*dsin (e3) )/Id

return
end
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subroutine sector (hi)

* This subroutine computes sectoral correction terms to be added

* to the variation of each of the orbital elements

implicit reai*8 (a-h,m-z)
real*8 kz
dimension clm(8),slm(8),tf(8),tfp(8),,te(8,,8)

conmmon /ppt/f(25),osc(9),u(3),v(3),w(3),vel(3),r,tm,kz
coimmon Icons/c (25)
commnon /n/theta2, eta, eta2, esq
conmmon /aec/agda, agde, agdi, agdi, agdg, agdh

if(agda.ne.l.OdOl)go to 330
clm(l) -0.35961113d-07
cl~m(2) -0. 18246786d-05
din (3) -0. 22207398d-05
clm (4)'msclm (3)
din(5) -0.37098633d-06
clm(6)-clm(5)
clm(7)-0.22580118d-06
clm(8)-clm(7)

aim (1)-0. 24286442d01
slm(2) - . 57568525d~i
slm (3) -0. 12107857d00
aim (4) -shin(3)
siin(5).'0.96916794d0
slm,(6) -slm (5)
slm(7) -0. 11169656d01

teM (8,) -IMO.Md

te (7,21) -0. OdO
te (7,32)-i. OdO
te (7, 3) -1l. OdO
te (7,5)i-. OdO
te (7,65) --1. OdO
te(7,6)--1.OdO
te (7,87) --1. OdO

te (8, 1)-i. OdO
te (8, 2) -2. OdO
te (8,3)1l.OdO
te (8,4)l. OdO
te (8, 5) -2. OdO
te (8, 6) -2. OdO
te (8, 7) -3. OdO
te (8, 8)-3.OdO

fet a-i .OdO+eta
fl-i. OdO+f (8)
f2-i OdO-f (8)
f3- . OdO+3 .OdO*f (8)
f4-i OdO-3 .OdO*f (8)
f 152-f (15) * f (15)
ri-f (2) *f (ii)
r2-f (2) *f (12) -c (12)

tf (1)--i.5d0*f (8) *f (15)
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tf(2)-l.5d0*fl52
tf (3) -0. 9375d0*f152*f3- . 75d0~f1
tf (4) -0. 9375d0*f152*f4-O. 75d0*f2
tf (5) -1.875d0*f (15) *fl*f4
tf (6) --1. 875d0*f (15) *f2*f3
tf (7) -5. 625d0*f152*f1
tf (8)-5. 625d0*f152*f2

tfp(1)--l.5d0* (f(8)**2-fl52)
tfp (2) -3. OdO*f (8)*f (15)
tfp (3)-f (15) *(1. 875d0*f (8) *f3-2 .8125d0*fl52+0 .75d0)
tfp (4)-f (15) *(1. 875d0*f (8)*f4+2 .8125d0*fl52-0. 75d0)
tfp (5)-f1* (1. 875d0*f (8) *f4+3.75d0*f152)
tfp(6)-f2* (1.875*f (8) *f3-...75d0*f152)
tfp (7)-f (15) *(11 .25d0*f (8) *fl..5. 625d0*f152)
tfp(8)-f (15) *(11.25d0*f (8) *f2+5.625d0*fl52)

ta-1.0d0/f(2)/f(13) **5
flpl-6 .OdO
tg- . 0d0/eta2/eta
tgp-3 . d0~f (5)*tg/eta2

do 300 i=1,8
if (i-3) 301, 302, 301

302 flpl-8.OdO
tg-tgpl3 .OdO
tgp=(1.0d0+4.0d0*esq) /(eta2**2*eta2*eta)
ta-ta/f (13)

301 tai-ta*clm(i)/(r1*te(7,i)+r2*te(8,i))

te (3, i)-tai*tf (i) *(te (7, i) *f(8) -te (8, i)) If (15) *tg/eta
te (4, i)-itai* (flpl*f (5) *tg..eta2*tgp) *tf (i)
te (5, i)-itai* (tf Ci) *f(5) *eta/feta*tgp+flpl*tf (i) *tg

& +f(15)/fl*tfp(i)*tg/eta)
300 te (6, i) =tai*tfp M *tg/eta

go to 340
330 the-osc(6)

do 341 i-1,8

co~t-dcos (3int)
sint-dain (sint)
agde-agde+te (2, i) *cost
agdi-agdi+te (3, i) *cost
agdl-agdl+te (4, I) *sint
agdg-agdg+te (5, i) *sint

341 agdh-agdh+te (6, i) *sint

340 return
end

subroutine message(dl,d2,d3,mynod,dest,itype)

This subroutine is used to join to disjoint variables
* into a single array to be sent or received in one message
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implicit real*8 (a-h,m-z)

dimension msg2 (3)

integer mynod, dest,pid, itype,maglen

data pid/0/,msglen/8/

if (itype.eq.0) then
msg2 (1)-di
msg2 (2) -d2
msg2 (3) -d3
call csend (mynod,msg2,msglen*3, dest, pid)

else
call crecv (dest,msg2,maglen*3)
dl-msg2 (1)
d2-msg2 (2)
d3-msg2 (3)

endif

return
end

subroutine consi

* This subroutine is used by NAVSPASUR to set the
* constants used by the satellite motion model

implicit real*8 (a-h,rn-z)

commnon Icons/c (25)

BETA-398597. 62579588d0
ERKM'-6378 .135d0
FLAT-298 .26d0

* K-TERMS

C20--0. 4841605d-03
C30-0. 95958d-06
C40-0 .55199d-06
C50-0. 65875d-07
c(3)--0.5d0*C20*dsqrt (5.OdO)
c (4) -C3O*dsqrt (7. OdO)
c(5)-0.375dO*C40*dsqrt (9.OdO)
c (6)-iC5O*dsqrt (11.OdO)

* TWO PI

c (7)-6. 283185307179586d0
c(16)=1.0d0/c(7)

* HERGS/DAY , SECS/HERG, MIN$/HERG

c (9)-iER1K4*dsqrt (ER1K1/BETA)
c (8) -86400. 0d0/c (9)
c (17) -1440. OdO/r' (8)
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* WE(RAD/DAY), WE- 2 PI, WE(RA.D/HERG)

C (11) -6.3OO388O987dO

c(1O)-c(ll)-c(7)

* EARTH FLATTENING

c (13) -(2. OdO-1.OdO/FLAT) /FLAT

* SM/ER, KM/ER, NM/ER

c (2Gj) ERKM/l. 609344d0
c (21) -ERKM
c (22) -ERKM/1 .852d0

* DEG/RAD
c(23)-360.OdO/c(7)

* RANGE RATE/ER/HERG TO CYCLES/SECOND -CONVERSION

c (24)-c (21) *216. 980d+06/ (c (9) *2.997 925d+05)

* FENCE PLANE DISPLAC FROM EARTH CENTER
c(25)-O.31000d-02

return
end
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APPENDIX D

P 3T SOURCE CODE LISTING

This appendix contains the listing of host and node

programs comprising P3T program set. The host program loads

the node program and clears the nodes once the process is

complete. The node program contains the instructions for the

nodes to complete their respective portions of the P3T

parallel algorithm. The node program assigns Node 0 to be the

distributing node, the highest numbered node to be the

collecting node, and the remaining nodes to be the working

nodes. The working nodes execute the original NAVSPASUR

subroutine PPT2 with only minor modifications.

Host ProQram:

program P3th

* This host program loads the node program P3tn on the
* nodes of the attached hypercube. Upon completion of
* the catalog of satellite data, program clears nodes
* for another process.

* Set host specific parameters

data pid/O/

* Set process id

call setpid(pid)

* Load program P3tn on the nodes

print*,'loading nodes'
call load('p3tn',-l,pid)

* Receive message that nodes are complete

call crecv(99,istop,4)
print*,'nodes complete'

* Kill process on nodes
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call killcube(-1,-l)

stop

end



Node Program:

program P3Tn
* This program propagates n-2 satellites concurrently,
* where n is the number of nodes belonging to the
* attached cube. Node 0 is the distributing node and
* Node n-i is the collecting node. The remaining nodes
* are the working nodes that propagate the satellites
* using NAVSPASUR subroutine PPT2. For simplicity,
* the tasks for all nodes are combined on this one node
* program. Tasks are partitioned by logical if statements.

implicit real*8 (a-h~o-z)
real*8 kf(10)

integer mynod, numnode, host id, pid
integer mynode, numnodes,myhost,mclock
integer eof

dimension ar(6,8),br(3,6)',cr(3,6),dv(3)

conmmon/cons/a (64)

coimnon/ppt/f (25) ,osc (10) ,kf (10) ,cf (10) ,bs (3, 4) ,u(3) ,v(3) ,w(3) ,r,
& vel (3) , dind, tin,dkz, dident
conunon/dcsub/pe (6,8), e(8,8) ,ep (8,8) ,g (8) ,gp (8) ,ifti (8), ifto (8),
& iteri,itero~jof,jol,stat(20),tol(6),,iw,of(ll),,ow(8,8)
conumon/foreo/rho (3), ros,hdr, hdv, rdv,del, iter
coimmon/bloc/sat (84, 4800)

data istop/l/,pid/0/,msglen/672/
data isat/1/,n/1/

mynod-mynodeo(
numnod,'-nuinnodeso(
hostid-myhosto(

*000000000000000000000000000000000000000000000000000000
* Node 0 reads and distributes data among the working
* nodes

if (mynod.eq.0) then

* Read complete catalog of satellite data

open (unit-lO, file-' /usr/phipps/in , form-' unformatted')
read (unit-1O, iostat-eof) (sat (j,1) , j-1,,84)

1200 if'(eof.ge.0)then
isat-isat+1
read (unit-10,iostat-eof) (sat (j,isat) ,j-1,84)

go to 1200
endif
close (unit-1O)

* Send number of data sets to all nodes

tO-inclocko(
isat-isat-1
call csend (mynod, isat, 4,-i, pid)
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* Distribute satellite data sets to working nodes

iter-isat /(nunmnode-2)
do 1201 j-l,iter
do 1201 i-l,numnode-2

call csend(mynod, sat (l,n),msglen, i,pid)
1201 n-n+l

iter-mod (isat, numnode-2)
n-n-i
do 1202 j-l,iter

1202 call csend(mynod,sat(l,n+j),msglen,j,pid)

* End Node 0

*0000O0000000000000000000000000000000000000000000000000

* Begin working nodes

else
if (mynod. lt.numnode-l) then

* Use subroutine consl to set constants

call consl

* Receive number of data sets from Node 0 and compute total number
* of satellites to propagate

call crecv(0,isat, 4)
tO-mclock ()
if(mynod.le.mod(isat,nunuode-2) )then

iter-isat/(numnode-2) +1
else

iter-isat /(numnode-2)
endif

Receive satellite data, execute PPT2, and send results to
collecting node

do 1220 i-l,iter
call crecv(0, f,msglen)

* Set parameters for subroutine ppt2

ind-I
kz-idint (dkz)

* Compute secular recovery

call ppt2 (ind, kz)

* Compute subsequent task, ie. predict position, update elements ...

ind-idint (dind)
call ppt2(ind,kz)

1220 call csend(mynod,f,msglen,numnode-1,0)
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* End Working Nodes

*CcCccccccccccccCCcCcCCcCcccCCcccccCccc~cCcc~cCcCccCccccc
* Begin Collecting Nodes

else

* Receive total number of satellite sets

call crecv(0,isat,4)

* Collect results from Working Nodes

do 1230 i-1,isat

1230 call crecv (-1, sat (1,i) ,msglen)

* Write results to external file

open (unit-l, file-' /usr/phipps/out' ,form-' unformatted')
do 1231 i-l,isat

1231 write(unit-ll,*) (sat(j,i),j-1,84)
close (unit-il)

* Send message to Host that process is complete

call csend(99,istop, 4,hostid,pid)

* End Collecting Node

*CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccCr;C~ccccccccC

endif
endif

stop
end
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